
 

33 Things I Wish Somebody Would Have Told Me
A programmer’s guide to quality code, great work relationships and respect.

Aaron Saray

This book is licensed Creative Commons ShareAlike 4.0 International (CC BY-SA 4.0).

Copyright 2015-2017.

Aaron Saray

http://aaronsaray.com 

Hello. My name is Aaron Saray, and I.. am a Programmer.

I know - that just sounded like an admission of guilt. And, partially, it was. I'm guilty of
a lot of mistakes, bugs, and failures.

But instead of feeling sorry for myself and burying my head in the sand, I paid close
attention to the ups and downs of my programming career and decided to compile my
lessons-learned in this online book.

My goal is simple: I want to make sure that other programmers (like you?) don't make
the same mistakes as I did. If I can save you just one mistake, one problem, one
sleepless night, then the years putting this book together have been worth it.

Are you ready to find out what the 33 Things I Wish Somebody Would Have Told
Me before I began my programming career?

Table of Contents

Table of Contents	 4

Introduction	 6

Programmers	 11

#1. Learn From Everything	 12

#2. Log Everything	 17

#3. Programmers are Customer Service	 21

#4. Real Talent is Making Things Simple	 26

#5. Have Pride in Your Work	 30

#6. Solve the Right Problem	 33

#7. Design for Your Users	 36

#8. When In Trouble, Break Up	 39

#9. Just Write More Code	 42

#10. Don’t Underestimate Analogies	 46

#11. Give Proper Visual Cues	 50

#12. Find Someone Smarter	 53

#13. Sometimes, Just Be Great	 59

#14. Catch Your Breath	 62

#15. Test Everything	 67

#16. Seek Out Feedback From Peers	 70

#17. Disagree In the Form of a Question	 73

#18. Guarantee Long-Term Quality Using Two Development Paths	 77

#19. Social Capital Is Just as Important As Skill	 82

#20. Step Up to Be A Senior Programmer	 87

#21. Write Out Your Goals	 91

#22. What to Look For In Code Review	 96

#23. Do Something Different	 99

Managers	 105

#24. Make Face to Face Work	 106

#25. Learn to Do What They Do	 111

#26. If You are Seducing a Developer, Follow-Through Is Key	 114

#27. Motivation Isn’t Always About Money	 118

#28. Programmers Are Like Rockstars	 121

#29. Sometimes, Just Ask Why	 124

#30. Great Programmers Don’t Always Know It	 128

#31. Always Be Perfect	 133

#32. How to Deal With the Idiots Upstairs	 135

#33. Get QA Involved Sooner	 138

Endnotes	 142

Special Thanks and Acknowledgements	 143

Introduction

When I was very little, I thought I wanted to be a mathematician. I can’t remember
exactly why, but I think it had something to do with multiplication tables. Or, perhaps,
because of the timed tests where I solved one hundred addition problems in sixty
seconds. My father told me a story from his childhood where he broke off the corner of
a 6 sided die and then rolled it hundreds of times. He kept track of the result in a
notebook. He was very interested in how changing the shape of the die affected the
results. Maybe I inherited math skills from him (one of the better traits, but, I’d love to
give back the snoring and bad eyesight).

I was also very fond of Tinker Toys, Lincoln Logs, and Legos. I enjoyed building things,
I was good at math. Perhaps I was on the path to being a structural architect?

During the 80’s recession (and afterward), our family was very poor. I had a few toys,
but my prized possession was the hand-me-down Commodore 64/Vic20. This
computer was pretty awesome. I mean, it was, if you had a hard disk, removable
diskette system, printer, tape drive, or anything besides just the core machine. Mine,
however, hooked into an old black-and-white TV and booted to a screen that simply
said “Ready.” I had no games, no permanent storage, and only a complicated manual
describing the BASIC language. If I wanted to play Blackjack, I’d have to program it
myself.

I did just that. When other 8-year-old children were still fantasizing about the newest
MicroMachines and Teenage Mutant Ninja Turtle action figures they could collect, I was
programming Blackjack, a pong-like program, and even “Go fish.” And, I was living in
supreme dread over thunderstorms. You know, thunderstorms - those great summer
treats that knock out the power in rural Wisconsin fifty percent of the time. No power
meant losing my program and having to start over. Oh, and I just hope that I had a
chance to write in my college-ruled notebook all of the tens of thousands of lines of
code to this latest game. If not, I’d be giving a new meaning to “rewriting” the software.

Yet, I still loved it. I loved everything about computers. I was able to use my building
and architectural planning talents and my mathematics skills. (Plus, nowadays, how
many Mathematicians do you know? I know I’m crazy, but I kind of like options when
I’m picking a job.) To this day, I still love programming. Any language I can learn, any
problem I can solve, I’m ready to take the challenge. I’m here to stay.

As my career has progressed, I’ve had a lot of chances to work with different teams,
join unique companies, and mentor up-and-coming programmers. This diversity has
driven home the simple fact: not everybody is like me. Not every programmer has the
same talents, skills, and comprehension of processes and procedures. Everyone is
different. Some things that seem common sense to me may not be to other
programmers. And, of course, vice-versa.

These differences inspired me to write this book. The topics in this book are backed by
years and years of research, and decades of experience - and mistakes. I’m incredibly
proud of my journey so far as a programmer and I look forward to the upcoming
decades that I have left in this field. I’m excited to see what new technologies my team
and I will be leveraging even five years from now. Can you imagine the innovations that
are to become common place in seven or ten years from now? While I’m saddened
that some of the technologies I’ve learned are now irrelevant (I’m looking at you,
BASIC), I know that I’ll continue learning new technologies to keep myself current.

But this book isn’t about technologies. If your entire bookshelf is filled with various
language and tool technical books, this book is not the competition. This book is about
the core concepts of programming that are language agnostic. These are the things
you learn from programming in any language, in any role, with any responsibility,
project size, and budget. See, while the technology comes and goes, the base skills of
being a programmer are the same. Great programmers can swap technologies while
continuing to build the core skills of logic, architecture, design, planning, and
communication.

And that’s what this book is for. 33 Things I Wish Somebody Told Me is a look back on
my career, growing as a programmer, unrelated to each technology I worked with.

These are the things that I wish somebody told me. Perhaps if I would have known
these things (or read this book back then… Doc Brown, ready your flux capacitor) I
would have had an easier road and would be farther along.

Basically this is a book to help you escape those embarrassing “you should’ve
known” or “you wouldn’t do it like that” moments. You know exactly what I mean -
when the boss or the senior programmer points to your code or software, everyone’s
staring at you, and your face suddenly flushes. Wow - is it hot in here?

This book covers both technical process concepts as well as some mental abilities that
any successful programmer needs to have. No matter what your chosen language is or
where you fall in the experience ladder of programming (or even managing
programmers), you can always get better. We can always get better.

I took a deep look at both my successes and failures to create the topics for this book.
I am passionate in my quest to help mentor and educate other programmers to be
successful. I’m hoping to help groom programmers to become great.

These are the 33 Things I Wish Somebody Told Me.

The Voice of This Book

Some of my best friends are also my co-workers. I mean, I do have some non-nerd
friends, but most of them are big geeks just like myself. They think about code even
when they should be relaxing. They envision redesigns for our web applications while
watching TV. We help each other out. We all are friends (even though, I technically am
the boss for some of them).

And, because you, dear reader, are probably also a big geek, I’m going to call you
friend as well. We’re friends now. I’ll be talking to you directly. I’m not going to go
abstract. You will hear “You should do this” and not “The programmer should do this.”
As you can probably tell already, this book’s composition and writing style is a bit more

relaxed. I meant it that way. I want to have a conversation with you. In fact, I hope to
hear from you before, during, and after reading this book. Find me
on aaronsaray.com and let’s chat. Tell me your thoughts. I’d love to clarify anything -
and even better, I’d love to hear your success stories from implementing some of the
33 things.

I’ll tell you a secret about my bookshelf. I’m scared of it. I see some really great books
that have some really good theory that I need to crack open. That’s my next step in
becoming a more skilled programmer. But, while the information is great, the books
themselves are dry and boring. I know the programmers and computer scientists that
wrote them are great people, but I just can’t seem to read them cover to cover. After a
few minutes, I get distracted. Look - there’s a fly on the wall! Let’s play tug-of-war, dog!
What’s new on Netflix. I just can’t stay connected. Some publishers understand this
problem. I won’t name names, but one of them has put pictures of the writers on the
front covers of their books to make the connection with the reader. I mean, now that I
can see a black-and-white awkward photograph of the programmer, I’m now going to
be much more connected and enthralled with every single page of useful, but
somehow still boring, information, right? Sorry! (If you do your research on these books,
you’ll see that I REALLY know first hand what I’m talking about.)

In the following pages, there are some great concepts to learn with some technical
backing, but that doesn’t mean we have to have a snooze-fest. Since you’ve made the
commitment to take time out of your busy schedule to read 33 things about becoming
a great programmer, my return on your commitment is two-fold.

First, I’ll try my hardest to educate with the 33 things. Trust me, these are huge
reflections from myself. You’re getting a part of my soul with this book - blood, sweat
and tears all went into this. Ok, well not blood. Lots of sweat. Perhaps a tear or two,
but that was allergies… yeah!

The second thing I guarantee is that I’ll write in a voice that is conversational, story
filled, and interesting. I’ll embellish where there’s a need, but cut out the extra BS when
it’s not needed. I use stories and my experiences extensively because that’s how I

learn. And, I find that a lot of programmers learn this way as well. In the same way that
looking at code samples can be used to learn a new language, stories about a
programmer’s decisions and consequences are useful. I don’t have a page-count in
mind, and that’s a good thing. That means everything in the final product is exactly only
what I think needs to be here, written in my true voice. If you read this book, you now
know how I talk on a daily basis - whether that’s a positive or negative, I guess I don’t
know!

Organization of This Book

This book has two sections: one for programmers and one for managers of
programmers. I thought it was important to include both because I’ve seen a lot of
programmers be promoted to managers without having any resources that are aimed
at the background where they came from.

The section for programmers focuses on a number of necessary skills. These range
from building social connections and soft-skills, learning to become better technically
at your craft, and communicate in ways that show confidence and garner appreciation.

The managers section is useful for both prior programmers and those with no
programming experience. It aims to give information about leading groups of
programmers, discovering programmer motivations, and how to interpret actions and
events that happen on a development team.

I would suggest reading both sections, no matter which position your current role is.
Both have useful tips and tricks, but with different aims.

Programmers

I’ve seen so many talented programmers get the short end of the stick. They get
passed up for promotion, make a lot less money than they deserve and work harder
than they need to. This makes me sad. But, instead of just ignoring the problem or
hoping it gets better, I made this section for them.

The business of programming involves much more than just code and applications.
There are ways to communicate, processes to develop, and habits to form. Once you
can get a grasp on these ancillary concepts, it can literally make your coding life better,
easier and more valuable. You might have great skill now, but this section is designed
to help you transform into something even better. Instead of a programmer with great
skills, you can be known as simply a great programmer. Skills and technologies come
and go, but great programmers are worth their weight in gold.

If you’re a manager, you shouldn’t skip over this part. You may be able to benefit from
the advice a programming veteran has for your team. By reading these tips, you should
get a better insight into the struggles programmers can face as well as the ways you
can use to help your team overcome them.

Are you ready to become a great programmer? Let’s find out some things I wish
somebody would have told me!

#1. Learn From Everything

AND LEARN TO LOVE THE HATERS

I don’t know when it happened, but sometime in my life, I suddenly had this feeling that
I knew everything. We all experience that sort of feeling here and there in our lives, I’m
sure. Perhaps you’ve attained the best or highest level in a particular field, or you are
the most talented person on your team at work. You might feel on top of the world,
which is not bad. But the bad part is when you start thinking there isn’t more room for
growth and that you can’t learn any more.

You can always learn. But, learning doesn’t always come in traditional vehicles. It
seems that most people think of learning as academic laden time wasted. You’ll need
to get this book, take this class, do these particular tests, etc. That’s not the case all
the time. (Don’t get me wrong, even though I have my student loan payments still
looming, I do see some value in the time I spent in the academic world.) But learning
comes in all different forms and from many different places.

I’ve definitely seen this firsthand. My parents used to make great decisions. They
taught me things while I grew up that really primed me to make positive decisions and
continue to grow my career. Something changed, however, and they started making
very poor decisions. Fast forward to now, and I think most would agree that the final
product of their combined decisions has lead them into poverty, depression, and bouts
with alcoholism. I’ve been very bitter watching this decline. I’m even more upset
considering I have two sisters that still live with my parents.

One of my sisters called me a few months ago and wanted to talk. She lamented about
the decisions that my parents had made. She told me about the things that they had
told her that she could and should do with her future. She seemed to be of the mindset
that mom and dad were a weight holding her down. My first reaction was to agree with
her - how dare they make her feel this negatively!

Luckily, I quickly reframed my thoughts while she was telling me the most recent news
in her life. I thought about all the positive things that my parents had taught me. I
looked at the completely obvious mistakes that they had made in their lives up until
now, and I decided I knew exactly what to say to my sister.

“You need to imitate the positive things they do and say, learn from their failures, and
disregard the rest.” I went on to explain what I meant to her for the rest of the
conversation. I described various events that happened while I was growing up, and
what I learned from my parents’ reactions. I encouraged her to continue to do the best
she could, follow her own path, show her parents respect, and never forget that there is
something to learn from even the bad things they said and did.

I think this type of scenario is something that we can all relate to, whether or not you
can relate directly to the sibling/parent dynamic. I highly doubt that there isn’t at least
one horrible boss that you’ve had in your career. You’ve probably had downright
despicable coworkers as well. That doesn’t mean you should block them out of your
mind. Instead, listen to, but do not absorb what they have to tell you, and learn from it.

At one company I worked at, most of the programmers work remotely. One of my peers
was telling me how he pulled in roughly double my salary. I asked him how that was
possible. He told me his little secret: He actually worked full time at two jobs at the
exact same time remotely. He somehow was able to balance both workloads, while
giving 50% effort. He never admitting that he was doing this, and no one seemed to
suspect a thing. I found this particularly disrespectful to his employers, and I found that
I could never trust him again.

I did learn something from meeting this programmer, however. Now, as a manager, I
make sure everyone on my team knows they can speak openly about other
opportunities they have. I learned that programmers may want to take on more
responsibility, freelance, or experiment with different technologies. I maintain this open
dialog to make sure that everyone is comfortable and that I won’t have people going
behind my back to do things. These covert actions only damage our relationships and
destroys productivity.

There are other ways to learn from people, too. I think of a few times I’ve given a final
product to a customer and heard the worst words a programmer can hear: “I hate it.”
Are you kidding me?! I put in months of my time, my heart, my energy, and my
creativity into this product and you quickly tear this all apart with three little words.
Especially if you work directly with individual end users, I’m sure you’ve heard this
before too.

Usually the first reaction is defense. You may want to retort that you’ve designed the
application or program exactly to their specifications or argue that you weren’t given
enough direction. However, that’s going to get you nowhere. Instead, let’s take a look
at this from another direction.

There are just a few, very basic human emotions that are the root of all the ways that
we feel. (Warning: I’m not a psychologist, so don’t hunt me down and yell at me.) For
me, they boil down to levels of happiness and levels of passion. (For those designery
people in the house, think of them as brightness and saturation.) Hate comes from
passion. So, when someone tells you in an angered tone that they hate your work, it’s
just misdirected passion. I know it’s hard to believe, but it’s true.

So, your job is to figure out what is this customer’s passion. It’s not logical that they
would absolutely hate something that you’ve created - most people are not
psychopaths or that emotionally unstable. What’s the deal? What is it that they’re
passionate about? This is what you may have missed. You didn’t know what they were
passionate about, and because of that, you either forgot to emphasize it or left it out
entirely.

During some of my freelance web design career, I came across one particular customer
that really helps illustrate this point. After the design had been completed, I met with
the customer to show off my work and their new site. As I explained it to them, they
looked very unhappy. Finally, when I had finished talking (and I’m sure I talked longer,
and then, increasingly more frantic than I should have because of the negative facial
expression on my paycheck… I mean client’s face), they said those fateful words… “I
hate this design.”

I knew this couldn’t be the case. I didn’t make horrible “hate-worthy” designs, so I
delved in deeper. I told the client that I understood, but I just need to get a little bit
more information out of them. I asked if they liked the color scheme and how I featured
their logo. That was ok, said the client. Ok, do you like the pages and menu scheme I
used? Yup, they said. Finally, I touched on the passion point.

“Do you like the contact page?”

“No! I hate how you didn’t ask for the phone number, and why do you have this google
map so large on the page! We don’t need them coming here, we just need to talk to
them. Remove that!” So I said I completely understood. If I removed that, restructured
it to emphasize calling or emailing, should we move forward with the design? Yes, they
emphatically responded.

I had found their passion.

In this case, the customer was vehemently opposed to having people come to their
retail location with customer support issues. They had a whole call-center available for
that. The phone number was particularly important because that’s how the relationship
was built in their business. I had found out what was important to them, tweaked that
messaging, and the whole design was now something they loved. I was able to look
into their “hate” for the design, find their passion, and learn.

Besides serving this customer, I learned even more from this experience. When I
designed future contact pages, I thought to ask the customer what kind of contact
form they appreciate the most. This helped me feature the primary contact information
in a way that helped convert customer complaints and sales opportunities the right
way.

There is always something to learn from every interaction we have with clients,
customers, and peers. Remember to always look at these interactions, whether they
are positive or negative, as opportunities to learn. Extract the knowledge from the
situation, reflect on what you could have done, what you did do, and what you’ll do

next time. Learning from everything, not just technical documents and manuals, is what
makes a good programmer great.

#2. Log Everything

LIES, DAMN LIES, AND LOGGING

People lie. I lie. Even you lie. So, what can you do about it?

Log everything. It’s very simple. If something happens, log it.

Chapter done.

Users will lie to you. And the worst part is, they don’t even mean to. When I used to do
technical support for a local Internet Service Provider, I ran into some of the worst liars.
Now, mind you, these were good, quality, hard working people, but they were liars.
They didn’t mean to be, but they were.

I can think of one particular example that makes me laugh still. I was working with an
older lady and she was having problems getting connected to the Internet. I asked her
what version of Windows she had. She said Windows ME. I started giving her tips to
get to the control panel and look at her TCP/IP settings. Each time I gave her a new
step to complete, she sounded somewhat confused. She sometimes would repeat
different words than I had said. For example, when I said “Network and Internet
Settings” she would say “Ok, opened Internet Options.” Towards the end of this
troubleshooting step, I was telling her to check on a specific Windows ME setting. She
swore up and down that she couldn’t see the option I was referring to. I asked her
again what version of Windows she had. She rather angrily confirmed that she had
Windows ME. I couldn’t seem to solve her problem because the remaining step just
couldn’t get accomplished if she couldn’t find the option I needed.

She finally became so angry that she put her daughter on the phone. I asked the
daughter what she saw on the screen. She described the placement of all the icons
and the labels. I asked what version of Windows it was and she said it was Windows

98. I said her mother had insisted it was Windows ME and that’s why we were having
problems solving the internet connection issue. She laughed and told me that her mom
had just saw the newest computer commercial on TV earlier that day. Because she
couldn’t get on the Internet, she was thinking of buying a new computer. This new
computer came with Windows ME installed. So, because her mom didn’t know much
about the different versions of Windows, she had just assumed from that point forward
that she also had Windows ME on her older computer.

In this story, the mother lied to me. She didn’t mean to and she didn’t even know she
did, but it really was a lie. (Some would argue that a lie is purposeful, and this was just a
mistake, but I disagree. In this case, this became more than a mistake and morphed
into a lie because she insisted on a false truth without taking the steps to verify it.)

When I create software, I’m very generous with my logging. I like to log everything. I log
errors, debug messages, and even changes to records, objects, and data. I try to build
historical paths so that I can audit the changes that the system has gone
through. (Now that data storage is much cheaper, how can you justify not storing this
information?) This helps immensely with tracking down what users do before, during,
and after a problem occurs.

I’ve had a number of instances when support requests were put in and my logging
helped track down the problem. I can think of another scenario where a customer
service representative at one of the companies I worked at was lying to the
programmers. There was a multi-step process that needed to occur in one particular
order for both business and technical reasons. Other representatives were able to do
the task accurately. Nothing bad happened with their customer records. However,
when this particular individual did the task, she always had to submit a support request
because “the software is way too buggy.” We asked repeatedly if she did the process
the right way. She swore she did.

Looking back into the log files, we were able to determine when she had logged into
the website and what data she had changed. We were able to recreate her tasks on our
test system. Then, we were able to correlate those steps with timestamps on other

systems and found out why she was having the issue. She was repeatedly doing the
tasks in a different order than what was required and lying about it. Once I presented
this information, I closed the support issue as not relevant. I tried to give her the benefit
of the doubt - she didn’t realize she was lying. (Turns out, a week later when I was
doing follow up on the support request, I found out she was no longer working for the
company. Hmmmm.)

When we look at ourselves, we can’t imagine we’d lie (or make mistakes and let them
spiral out of control into “lies”). Yeah, normal users do that, but certainly not us.
Software programmers are far more honest and accurate. I know that I would never lie.

Except, I did. I lied to my car mechanic. He was very gracious in how he caught me,
making sure I knew of my mistake while not embarrassing me too much (in public).

I was having brake problems. Whenever I slowed down, I heard a horrible grinding
sound. It felt like the wheel might even fall off. I brought my car into the mechanic and
did my best to describe the problem. He asked if it was all the time or just when I hit
the brake hard. I said all the time, no matter what. He questioned if it was when I
turned left, right, or all the time. I said it was all the time. He took the car and went to
work. (Maybe he knew right then I was lying. The loaner car that he gave me was…
interesting at best. Purple is not my color.)

Later, my mechanic called me with the bill and an explanation. He said it looked like I
had problems with my right-front brakes and suspension. He said these would have
been apparent with hard braking and when I turned to the right. He said when his team
tested it, they found that right away. After thinking about it, I put it all together. I had
lied! I was so angry about having car problems that the specifics had clouded in my
head. The more I thought about it, I realized what had happened. Normally, I heard the
problem when I was heading home from work. I had a stressful job at that time so I was
particularly aggressive when driving home. Plus, my road was a right turn off of a very
busy main road. I drove the road too fast, had to turn right into my subdivision and
would usually brake very hard. If I would have told him this, he could have easily told

me what the problem was. Instead, I had (accidentally) lied to him. I guess I’m not
immune to this either.

Log everything. When in doubt, create a log of the problem. When something doesn’t
match the workflow, log it. In fact, start creating software with logging first. If you really
need to conserve disk space or have a heavy load where extra logging deeply affects
performance, initiate multiple levels of logging, so you can adjust what amount of
logging you need based on the situation. Another thing that I’ve implemented in some
of my projects is various levels of logging targeted per user or per platform. This allows
me to turn on extensive logging for only one user in the system. All in all, you’ll never
find that you regret having created more logs than less. It not only helps cover yourself
against false bugs, but it helps you track down existing ones faster, too!

#3. Programmers are Customer

Service

BUT SOMEONE FORGOT THEIR HAIR NET AND RUBBER
GLOVES

I used to work as a family-style banquet waiter. I would bring out large trays of food
and serve from head table down the sides. Never would fail, by the time I got to the last
grouping of people, they were irritated. Why did we have to wait this long for our food?
As I listened to their complaints, I couldn’t help thinking “you know, I’m pretty certain
that you’ve eaten before… and that you’ve had at the very least one other meal today.”

The restaurant customers seemed to have no respect for me. They treated me like
garbage. I couldn’t believe the attitude that some of them had with me. Just because I
am serving you doesn’t mean you should treat me as if I’m second rate or scum. I
wondered how many of these people had ever been in a service industry before. I
found out later that some of the customers were lawyers or financial planners. I
couldn’t believe they would treat a fellow customer service provider this way.

As I learned more about the various groups of people who came to my restaurant, I
began to realize that a lot of them had ‘family money’ or had been put into their
positions by default. They never had to start ‘at the bottom’ - that is, the place that
they seemed to think I was at. These men and women had lost the wisdom of our
elders that proclaimed that to truly serve another human being is a privilege. The act of
one person choosing of their own free will to meet the needs of another is to be
respected.

As my career goes on, I look back at these memories with a particular fondness. I
recognize that those experiences had shaped me in ways I am still discovering. For

example, if you are now currently in a customer service job that allows for tipping, you
can tell others who have had similar jobs. At the restaurant, the patron far removed
asks friends or uses a calculator to figure out exactly what that 18% mark should be (or
some do less!). Generally, you can recognize your fellow restaurant veterans by the
quick way they calculate the tip: move the decimal one spot, multiply by 2, and make
sure that’s the least amount left on the table. That simple act of 20% tipping, or more in
some cases, is usually a sign of someone who has been there before and understands
the demands and the importance of good customer service.

As a software developer, you might not yet draw the correlation of these stories to your
daily project work. After all, while the restaurant server is bringing food to the table and
cleaning up, you are actually creating something out of nothing. Your thought, your
design, your artistry creates a piece of software that wasn’t previously available. If
you’re on the cutting edge, you may be even creating software and algorithms that
have literally never existed before in human history. You label yourself as a product
producer.

You are wrong.

All programmers are in customer service. We are the epitome of customer service. Let
me describe what I mean. A good portion of software is meant to simplify or automate
other processes or systems that already exist. Your customer is asking you to refine
their business process or vehicle. Think of it as taking your car to the mechanic to get a
tune-up. Your mechanic isn’t going to give you a brand new car, he’s just going to
make sure this one works better, faster, and more reliable (and call you on your lies like
mine did!). This is what you are doing as a software developer. The purchaser of your
software already has a business, you are just creating something to propel it further
and faster.

Depending on your industry, however, you may be making a brand new solution to a
problem by creating a new piece of software and defining the process in which it can
work. However, I still insist that you are customer service. The root of this statement
again is that you’re solving a problem. If it weren’t for people who had a problem, you

wouldn’t be creating a solution. Once again, you are serving your customers with a
service solution. If they didn’t need this service, you’d not be in business.

There are many examples of software that were made without a clear solution to a
problem. These entrepreneurs or programmers lost sight of the main goal: provide a
customer service solution. They may have made an amazing product, but since it
wasn’t serving a customer need, it lost steam after its initial release. Before you know
it, the non-customer-service-centric business failed.

When you look at this book in its entirety, you’ll actually realize these are just chapters
on increasing your level of customer service. In the same way that we’re likely to
appreciate a boutique with knowledgeable salespeople or generously tip our favorite
coffee house, the same goes for programming. Your job is to go the extra mile. Not
only should you be solving the problem that client has asked for, but you should also
be looking for ways to continue to serve them better.

Expanded customer service comes in two forms, both profitable. The first is the most
clear to understand: the upsell. While you’re solving the problem for the client, evaluate
the rest of their processes that your customer has made visible to you. Consider if you
can make improvements to help save the customer even more time and money. You
may want to offer them that service as an extra (a veritable “would you like fries with
that?”).

Here’s the kicker: don’t offer to just fix the problem, but take the guesswork out of it for
them. Describe the problem you can solve, state your solution, and give them the
benefits of implementing the solution. For example, you may say that you noticed that
their representatives could spend up to 20% of their day using an old, outdated
software interface. You could update this interface to make it easier to use, therefore
shaving an estimated 50% off of the time each representative spends accomplishing a
task. This reduces the amount of time spent to 10% of the day, realizing a 10% savings
and productivity boost over their entire staff. How can they say no to that? That’s an
upsell, securing more work for you. Better than that, you’ve solved another problem for
them. That’s customer service.

The second form of expanded customer support in the programming world is simply
exceeding expectations. I’ve seen both right and wrong examples of this. First, let’s
start with the wrong example. A colleague of mine was creating a new website for a
non-profit organization. He really felt passionate about their mission, so he not only
created the website, but built a donation interface using PayPal too. All this for free!
The client didn’t realize this new addition at first. Days later, they did - and it was very
bad. They had not yet finalized the paperwork creating their non-profit organization and
tax-deductible donation status, but had received donations to their PayPal account
already. The interface had falsely told donors that they could claim a deduction on their
taxes for this donation. The client was obviously irritated that they now had to contact
those donors and let them know about their current situation. The donations were not
tax-deductible yet. This programmer had tried to exceed expectations, but he had
done it in the wrong way. Needless to say, he has not been contracted to do any more
work for them.

There is a right way to exceed expectations, however. A friend of mine was working
with a client who had a rather small budget. Because of this, they were generally fine
with fixes and updates being applied in a queue mixed with other higher paying clients.
The client understood that sometimes their fixes would take a few days, even if they
appeared to be urgent. One Friday night, however, the client discovered a bug on the
website. He contacted my friend via email to let him know about it. By now, the
relationship was established, expectations were set, and the client knew it may take a
few days to get the fix applied (especially since it was the weekend). However, my
friend happened to have some time available, so he fixed the problem that night, sent a
follow-up email, and invoiced the client.

As usual for this particular client, the invoice was paid immediately. The owner
responded to the follow-up email with nothing but the highest praise for the work that
was done on a Friday night. My friend had truly exceeded expectations and made the
client very happy. It doesn’t end there, though. A few days later, my friend received a
letter in the mail from the client thanking him again for his quick work. Included in the
letter was a $250 gift card to a local home improvement store.

This particular outcome is a rather unique one. The only other similar scenario that
comes to mind was of a colleague who was once presented with a disposable cooler
full of fresh steaks. Regardless of if you see an immediate material return, the main
point is to exceed customer expectations through great customer service no matter
what. This will help make the difference between choosing you in the future to do the
job or trusting you to run a huge project and going a different route. What’s even better
is the indirect outcome from this great service: when you increase your rates or ask for
a raise, it’s much easier to stick with you than to attempt to find someone else who
may not have the level of service you provide.

I think its incredibly important to approach every programming task as a new foray into
the realm of customer service. Remember, if these customers didn’t have these service
needs, we wouldn’t have jobs.

#4. Real Talent is Making Things

Simple

NO, PLEASE. TALK TO ME LIKE I’M A FIRST-GRADER

I remember when I used to have to time the start of a television movie just right so I
could fit the entire broadcast onto a VHS tape. I knew that for longer movies, I’d have
to either lower the quality of the tape recording or make sure to pause the recording
during commercials. I had to make sure I bought the right VHS tape, connect the
coaxial antenna cable to the VCR correctly, and be vigilant about making sure that the
tape didn’t become jammed.

Apparently, I was lucky. I was told that watching movies and recording them used to be
much harder than this. Fast forward today and recording a television show is as simple
as finding it in your listing (present or future), and clicking record on your DVR. It has
plenty of space to record the broadcast, even in HD. You don’t even need to be awake
or around. This is pretty simple.

If you look closely, the trend in all technology is directly related to making things
simpler. The interfaces become simpler (it’s not that difficult to use an iPad - 2 year olds
are doing it) and parts of our lives become simple or automated. Marketing is poised
around the concept of simplicity. Rarely do you hear something like, “On your Android
mobile phone, you can easily install any software package by searching for it in Google
Play Store. Or, you can find the proper .apk and upload it. You can also connect using
adb and push packages to your phone over usb. You have so many choices!” Instead,
marketing says, “the iPhone syncs all your apps from the app store - you never have to
worry about choosing or installing anything new again.” Everyone seems to value
simplicity.

Let’s move beyond the concept of programming and software. Success is measured
by simplicity. When someone is selling a wonder-cure or a get rich quick scheme, it’s
all about how simple it is. (No one wants to buy a product that requires 120 steps to get
payback. Give me 3 steps or less, or it’s not worth it - not even for a million dollars.).
Speaking of rich, have you ever noticed how refined and simple the truly rich person’s
belongings or clothes are? Compare the $10 speckled, multi-colored button up shirt
from Walmart (a budget-conscious choice), to the flashy designer t-shirt (someone
looking to demonstrate the illusion of wealth and success), to the simple cotton woven
dress shirt with quality stitching and no logos (look at how real millionaires dress). The
plain pin-stripe suit that gushes luxury by simply having equally aligned vertical
striping. Simple, elegant, successful.

Real talent is making things simpler. Great programmers create simple solutions. Let’s
break this down into code and user interface.

The best code is the simplest. Very elegant solutions often come in simple, small
packages. When creating code for your project, continually concentrate and focus on
making sure that the code is simple. If you start extending and mangling the code in
such a way that only someone with a deep history of the project can work on it, it’s no
longer simple. It’s no good. If this is the path you’re following, it’s immediately time to
refactor. Even when you’re creating it the first time, keep an eye on the simplicity of
your code. How can you do this in an easier manner?

Within the concept of simple code comes another warning: don’t try to be too clever.
Actually, don’t be clever at all. Whenever I hear about a programmer coming up with a
really clever solution, it’s usually way too complex. A great programmer is excited
about the solution, the technology implemented, and the solution they came up with.
However, they should also be proud about how simple the solution is with the right
code, not how clever the solution is by twisting and turning that square peg of code
into that round hole.

Along the lines of being too clever, short and simple code should not be created just
for the sake of creating simple code. Have care not to sacrifice the readability, art, and

flow of your code while trying to make it simple. I’ve seen this interpreted wrong a few
times: “Oh, to make it simple, I named this instantiated class ‘x’.” Looking back, no
one knows what ‘x’ means. Yes, it is simple, but it doesn’t mean it’s good.

The simplest and most elegant code won’t guarantee success of the project if the
users can’t seem to use it. The second area to concentrate on simplicity involves the
user interface.

There are a lot of competing thoughts on what makes a great user interface. Some
experts argue that the best user interface is one that anyone could use intuitively.
Others suggest that in some situations, the interface must be customized to the
workflow. Custom workflow interfaces may not be the most user-friendly, but they do
guarantee speed within a custom job. I’m not going to pick a solution or solve this
problem for you. This book is too short for that. I tend to lean towards the intuitive use
spectrum, so that’s how I’ll frame the rest of my explanation.

A good rule to follow regarding simplicity in user interface is to test it with some non-
stakeholders of the project. Remember, you’re so close to the project that you won’t be
able to address the interface as good as someone fresh, new, and not as invested.
With this, of course, comes the requirement that you must be open to the suggestions
from the fresh pair of eyes. Test the interface with many people and see what
resonates. Did this really work? Could something be simpler? Do they have to ask you
questions to use it or can they figure it out right away? Are there any unneeded
requirements to be overly precise when using the interface? (“Oh no! Please don’t
wiggle the mouse! You’ll destroy everything!” I hate to be the bearer of bad news, but
that means something’s wrong with your design.)

Creating simple user interface is important. (For those programmers who have
designers and UI/UX people to work on this with them, consider yourself lucky!) The
best suggestion I can have is to listen to the project requirements and then determine
the need of any specified interface suggestions. Try to determine if the suggestion is
mandatory or if its just the stakeholder’s vision for solving the problem based on their
limited experience. You’ll be surprised: sometimes even your outside view can greatly

simplify the interface that the project needs. When you aren’t solely focused on the
daily business, you can have that fresh view. Be ready to make the case to support
your decisions, however.

A really great, talented programmer makes things simple. He or she can create artistic,
simplistic, elegant code solutions with intuitive and simple user interfaces. Whenever
possible, recognize that the simpler you can make something, the more it will be
accepted and the better it will perform.

#5. Have Pride in Your Work

FOR THE TENTH AND FINAL TIME, YES, YOU ARE REALLY,
REALLY GOOD AT DOUBLE CLICKING

I’ve said it many, many times. Show me a programmer who was never behind on a
project and I’ll show you a liar. There’s always going to be times when a task takes
longer than expected, something comes up, or there just isn’t the possibility of
completing the task in the original bounds. There are many ways to solve this problem.

When you’re behind on a project, you could talk with the client or stakeholders and
request an extension. You may be able to explain what happened, give them an insight
into the new difficulties, or work out a feature compromise. Maybe that’ll work.

Another way to catch up on a project is to cut corners. Instead of writing unit tests,
skip them. Do not create any documentation. If you’re not as familiar with the proper
way of doing something, just fall back on old, less accurate methods. Maybe that will
catch up the project.

Perhaps you’ll find a programming genie, and your wishes will be granted. Back on
time!

This chapter isn’t about how to catch up on a late project or program. I’m not going to
tell you what is the best way to stay on task. This chapter is about something else I
want to stress: pride in your work.

Whenever you can, resist the urge to cut corners. Remember, this code (and art) you’re
creating is a reflection of you. Imagine if your mom or dad understood what you were
doing (perhaps they do, and then you’re incredibly lucky), would they be proud of it?
Would you be willing to show your programming mentor this work? Would you like

hundreds of thousands of fellow programmers to download your code and use it? If
you feel squeamish about any of these questions, you may be cutting corners.

Way back in elementary school, I learned the value of having pride in your work. I don’t
remember the specific teacher or class, but I remember the story. The class had
finished homework and turned it in at the beginning of class. The teacher looked
through all of our work, graded it, and handed it back to each of us. I remember not
having the best grasp of the material, but I did the best I could. After the homework
was handed back, many students looked visibly upset.

The teacher stood in front of class and said, “with the exception of Aaron and [some
other student], I don’t think any of you have any pride in your work. I gave you the
grades you did based on both the answers you gave and the quality of your work. If
you’d like, you can redo this assignment for a higher grade.” After class, I compared
notes with other friends. While I had more errors than many of them, I had one of the
highest grades of my peers. I had been rewarded for trying my hardest and taking pride
in my effort. I opted not to redo my homework, but I did study more to try to learn the
answers to the questions I had got wrong.

As primarily an open source programmer, it is very important for me to have pride in my
work. Many people download my projects, review the source code, and implement it in
their projects or at their company. I need to make sure I do the best I can. I’ve been on
the receiving side of poor work many times and it’s not fun. Whether it’s undocumented
code, no help or FAQ, or poor logic and structure, programmers who didn’t have pride
in their work just seemed to have lower quality projects.

Even if you’re not an open source programmer, you may run into future colleagues that
have had the joy to work on your code. You will have gained more respect, even if you
had bugs in your code, by having created very accurate, ordered, precise code that
you are proud of. Hitting deadlines is important, but pride in your work is paramount.
When you create quality work you’re proud of, you’ll see the ramifications everywhere.
Peers will know that you are someone who can produce good code and are happy to

work with you. Managers and clients will know that the product they get from you is of
the highest quality and caliber.

Have pride in your work. Your work is a reflection of you. And while it may not seem
like it at the time, this investment always comes back to reward you - or haunt you -
depending on which path you choose.

#6. Solve the Right Problem

SOME GREAT PROGRAMMERS DON’T EVEN NEED TO
CODE

Having programmers solve problems can be expensive. Telling them the wrong
problem to solve can be even more expensive.

I have a great example of this. At one place I worked, the project manager gave me a
detailed requirements document. Well, that is strange! Rarely were the requirements
this detailed. I was pretty excited to have this set of requirements, though. Perhaps
with less guesswork, my job will be easier! As I paged through the document, however,
I became a little bit concerned. The amount of work here was staggering.

This project was requesting that I make changes to every single area of our system that
interacted with a specific account number format. It required that each input, each
validation, each sanity check and every service call be modified. This was quite a lot of
work. I read through the document and estimated the amount of work like a good robot
programmer. I gave the project manager back my quote. He was not happy.

To solve this problem, I estimated it would take 2 programmers roughly 5 months to
solve the problem. At our billable rate of $125 an hour for the 1680 combined hours,
that was a bill of $210,000. As one might expect, the project managers and
stakeholders asked if there was any way that I could shave any time off of that. That’s
too much, they said. I asked for the requirements document back.

By this time, I decided to start billing for my quoting and analyzing. It had taken me
hours to give the first quote, which was rejected. I racked up another 6 hours (at
$125) requoting and analyzing everything. Then it hit me: they had me solving the
wrong problem.

I asked for more detail about the account number problem. I had to go much deeper
into the business to find out what the real problem was. It had to do with the way that
certain accounts were created in the system. The chance of this particular scenario
happening was as frequent as about 1 in 100. I suggested a safeguard against this
particular process from happening. Instead of a programming patching the problem
downstream, I suggested a process change to stop the flow at the origin. The only
other necessity was a few checks and followup to make sure the new process was
being applied properly.

The stakeholders were amazed at my solution. Then, they took the time to figure out
how much the process change would cost. They estimated they’d have to train the 15
data entry and administrative resources for about 2 hours. This cost was about $30 an
hour. Then, they’d be able to do a few checks here and there to make sure the new
process was being followed (considered a negligible administrative cost). The total cost
of this change was 30 hours at $30 an hour, plus my 6 hour estimate: $1,650. Not only
was this hundreds of thousands of dollars cheaper, the total cost in dollars was so
close to my total of hours estimate, it was funny. Basically, our team would have to
work for a combined wage of $1 an hour to solve the problem within the same fiscal
constraints.

In this case, I looked at what the problem I was being asked to solve was, and decided
that any programming solution wasn’t the best thing to do. I reframed the project to
focus on a different problem with a different solution.

Programming is not just about problem solving, it’s about deciding what problems to
solve. In this case, the solution came to me after a second look and a period of
analysis. However, an even better programmer may have been able to catch that even
sooner. Figure out what problem actually needs to be solved, and solve that.

Earlier in this this book, I related our programming jobs to customer service. Even with
startups, we are customer service. We are serving the needs of someone. Another way
to look at this is that we’re solving someone’s problems. In fact, when we’re not
successful, it’s almost guaranteed that we’re solving the wrong problems. A great piece

of software trying to solve a problem that isn’t needed or doesn’t exist only will be a
great piece of software forever. It will never see full potential use. It’ll be a great piece
of software, but never successful.

Another way I look at this concept in programming is related to optimization. So many
times we find ourselves trying to eke out the last little bit of performance from our
software. Sometimes, it can be easy to go down a random rabbit hole and do
something called premature optimization. That is, we invest in optimizations for
problems that may not exist yet. We’re solving the wrong problem. Instead, look for the
low hanging fruit and attack that. Solve the problem that needs to be solved, that is
right in front of your face, and which has a solution that makes an impact.

Want to be a great programmer? Just don’t solve problems - solve the right problems.

#7. Design for Your Users

STOP BEING SELFISH. THERE’S A WHOLE LOT MORE OF
THEM AND ONLY ONE OF YOU.

It is very rare that a programmer will find themselves in a completely siloed world
where they never make any decisions about how the user interacts with the software.
While you might not be the UI/UX creator, designer of the application, or architect of
the process, there are still times when you do make some choices that affect the user
interface. So with that in mind, I have something very important to tell you.

Stop designing like a programmer.

Seriously, stop it.

Half of the readers will know exactly what I’m saying. You’ve seen it in your own work.
You’ve worked with a great designer or layout specialist and they’ve made tweaks to
your design that just made sense. That “Ooooh” moment where you saw your work
polished. That’s what I’m talking about. Pay attention to that.

The other half of readers have no idea what I’m talking about. You are the ones I want
to reach out to now.

If you are a programmer, and you’re designing interfaces, chances are you’re doing it
wrong. What could be worse is if you don’t at least recognize this.

When I first started in web development, I thought that I could be all things to
everyone. I could program the backend while simultaneously making a great layout,
logo, and sales-based design. I pumped out a lot of designs that I was proud of. I saw
no problems with them.

A full time designer colleague looked at my portfolio and said, “You really are a
programmer, aren’t you?” I asked him what he meant. He explained that I really
focused on lining things up in rows. What’s wrong with that, I argued. He smiled and
went on, “your colors are all very monochromatic. There is no eye flow and
concentration. You seem to use attention grabbing things just to fill up space.” I still
was pretty incredulous. I didn’t think I had done that bad. I could use the site perfectly.
He finally tamed my temper and indifference with his last sentence:

“You’re not designing for your client. You’re designing for yourself.”

This one experience really kicked off something for me. I suddenly had the desire to do
design only when I absolutely had to. Whenever possible, I would find people who
were skilled in design to offload that work to instead. I did, however, pay incredible
attention to the final output. I set up some basic guidelines to follow for both
myself (when I had to) and when I reviewed my partners’ work.

First, don’t design like a programmer. Programmers think very logically. One form
element goes under the next, under the next, under the next. Each step should have its
own screen. Eyes go directly from left to right, one line at a time. You start and
complete a process, never abandoning it in the middle. All things that programmers do
and think, but all design principles that we shouldn’t employ.

Designing like a programmer is not sometimes bad - it’s always bad! I think of some
great tools that I use for programming that were created by a programmer, but also
designed by a programmer. The core functionality does what I need it to do, but I never
really feel happy about using the tool. I look at other products that were obviously
developed by a team of designers and programmers, and somehow they just seem to
function better. They make me feel more efficient and happier when I use them. They
might even have less features, but I like them more. The difference here is that while
the programmer knew what needed to be accomplished, he did not understand usage
patterns of people. It was designed with logic, not with usable sense.

Second, consider the anthropology of your user segment. Most products are not used
by everyone of every demographic. You may wish that was our target market, but you
should have a general idea of who our audience actually is. Design for them. Architect
for them.

It’s important to get the demographic information from the sales or marketing team as
soon as you can. This is how you learn to target your product. I’m not saying
demographic lock-in (like forcing the font way too large for an older subset of users),
but I’m saying demographic concentration. Learn who your users are, design for the
most of them. Don’t design for yourself. You are one user and hopefully less than 1%
of your market! That’s crazy to cater to such a small segment.

Learn how your users generally use your product. You might have an idea of the
demographics of your users, but what is special about them? For example, users
under 20 would rather send messages via Facebook than via email. Ages 20 to 30
seem to use text messages for anything from casual conversation to important
business information. Those above 30 still consider email authoritative. The point is,
knowing how the users would want to use the product is just as important as learning
who they actually are.

Stop designing like a programmer. To have a successful product, design for your users.
The end result is something that you’ll love to work on and use yourself while your
users find it intuitive and valuable as well.

#8. When In Trouble, Break Up

PROGRAMMING AND NOT RELATIONSHIP ADVICE

If you think way, way back to learning your alphabet, you probably learned it from a to
z immediately, in one go. You didn’t say ‘a b c d e…’ over and over until you learned ‘f
g… h i…’ No, you knew it immediately from start to finish.

No? Then why do programmers force themselves to do everything in complete
packages? When expected to add a new system or interface to the software, most
programmers will try to build the entire thing all at once. I would argue against this
philosophy of start to finish. Instead, try something different. There is value in breaking
things up.

One of the programmers on my team had to work with our software’s authentication
system to integrate an LDAP solution. He was rather new to our custom authentication
model and to LDAP. He began the project by making a new interface for our
authentication system and then applying LDAP settings to it. He was stuck almost
immediately. His lack of understanding of both our authentication system in addition to
his recent introduction to the LDAP protocol combined to make even the simplest of
steps overly complex.

I told him that he was trying to do too much. Instead, let’s break it down into pieces.
First, spend some time learning the authentication system. Do not create the LDAP
process yet. Just authenticate correctly, incorrectly, try to break it, etc. Watch how the
system responds. Use debugging features to track through the code to see how it
works. Learn the current system. That’s the first step.

The next logical thought for most programmers is predictable. “Ok, after that, then I’ll
create my own interface in this system and add the LDAP support.” But, that’s wrong, I
cautioned him. After you understand how our system works, create a new, very simple

application. Create your own very simple, non abstract, hard-coded LDAP routine to
authenticate. Use this to learn how the protocol works. Authenticate, fail, try to break it.
Repeat the same processes as you used to learn our authentication model.

Only after both of these steps were complete, I told him, then combine the pieces. By
now, he would have known how our authentication system works and how LDAP
works. The combination then is just purely adaptive programming. He doesn’t need to
learn multiple things at once. Instead, he can focus on one thing at a time now:
integrating two known technologies.

Sometimes we can be in a rush to implement new technology. Just copy and paste
some code into the application and we’re good to go. However, more often than not,
this introduces more bugs and more false-starts than learning each part separately.

Another example I work with often has to do with complex HTML and CSS layout
issues. We’ve created a very complex site with a lot of features. The final piece of the
puzzle is being added, but the dimensions and placement of this feature are just not
working right. No matter what, the web designer can’t seem to get it placed properly.

As you can guess, there are two approaches here. First, keep pounding your head
against the wall and try every conceivable combination possible. You’re bound
to (accidentally) come across the solution. Who needs to hit the deadline! Timeliness
be damned! Or, the second approach is to break it up.

Create the feature on a new, completely blank page. Get rid of any scaffolding CSS
and base markup. Validate that you can do the complex placement without any other
layout affecting the feature. Once that is complete, slowly add on pieces of the existing
page. First, add on the scaffolding, but no content or major layout. Then, add in the
page layout. Then, add in the content. Along this path, at some point, the properly
formatted and positioned original feature in question will skew. This process allowed
the designer to narrow down the factors that were affecting the feature. It is much
easier to fix the problem now.

In programming communities, there is much discussion about proper design
methodologies and patterns. Some argue about the conciseness of classes or
methods. Others will point to the necessity to use procedural programming over object
oriented programming based on the task to be completed. But, if you look at the core
of all these discussions, it’s a focus of making something simpler, cleaner, more
efficient, and independent. Programmers are constantly looking for ways to reduce
spaghetti code and make components instead of dependencies. You never hear
someone argue for the fact of combining all the code into a completely cyclical mass of
indistinguishable source. Everyone wants to make it simple and modular, based on
their best guess of how to do this. Programmers are continually trying to break code up
into manageable pieces.

Since we already focus on making individual components of the simplest pieces as a
programming architecture methodology, why not use this same idea elsewhere?
Whether you’re creating new software or troubleshooting existing problems, break it
up. Smaller pieces are always easier to solve.

#9. Just Write More Code

YOUR FINGERS WILL BULK UP, BUT IN SOME CULTURES,
THAT’S SEXY

Really smart people should be successful. But, more often than we’d like to believe,
they aren’t. They suffer from a mechanism that is meant to ensure their success, but
ends up hampering them. This is analysis paralysis. (Say that three times fast! But not
out loud… don’t be weird.)

I’ve met tons of people in my life that have just great amounts of potential. However,
they talk themselves out of being the best person they can be. A smart friend of mine
would have made a great coffee house owner, but he let his brains get the best of him.
Instead of striking out and doing it, he decided not to. He became a programmer
instead. That’s fine, I myself am a programmer. However, that’s not what he wanted. It’s
not what he needed to do to feel successful. Instead of going full force into his idea, he
analyzed it. He thought about it. He found all the negatives and got paralyzed by the
thought of all the work. He never pulled the trigger. If he does finally get over this
analysis paralysis, I’ll be the first one ordering his espresso! (I am, after all, a
programmer - gimme caffeine!!)

This same scenario happens with really great programming engineers. They realize the
value and need for planning, so they sit down and plan out the project. They
incessantly document, analyze, plan, structure, architect, and compare various parts of
the project. They took that planning and documenting tome from their programming
classes and stretched it far beyond what is necessary.

If you look around at your colleagues, you can identify this programmer. He has a great
idea, but never seems to get the task done. He will miss deadlines, never complete the
project, and always seem rather upset about his work. Too much time was spent

planning and not enough time coding. The solution to this type of problem for
programmers is very simple.

Just write more code.

Now am I talking about writing poor code just to have something down in the editor?
YES! Am I implying that you should write a solution even if it’s not the best one? YES!
Before you crucify me for being a horrible influence and despicable author, let me
explain why.

By just writing more code, you will actually stimulate all parts of your brain to keep
thinking. You engage both left and right brains because you’re requiring both art and
logic to be applied. And, don’t underestimate the brainpower you really do have. Even
while you’re writing this sub-par code, you’re thinking about the problem in a different
way. While you’re writing code, you’re actually solving the problem in your head in
possibly a completely different way.

Don’t get paralyzed by thinking of the best answer. Just come up with an answer. So,
what do you do with this code when you’re done? Refactor or throw it away.
Remember, it’s just bits; 1’s and 0’s. You can simply delete the file and try again. But,
the exercise kept your momentum going forward. Instead of analyzing and talking
yourself out of things, you tried your best idea at the time. Maybe it was wrong, but
now you can look at it and know that for sure. Very few people can think entirely in
abstract (if we could, we’d all probably have better, more reusable code bases). If you
recognize this, then you’ll have more success by thinking and acting in the linear. Pump
out code, solve the problem the very first way you think of. Then, refine.

Write more code. It’s going to be wrong, but that’s ok.

Now, one caveat: don’t write this potentially “bad” code and move on. A common
argument I hear from programmers is, “If I write bad code, the project will look done,
the project manager will accept the work, and I’ll have to abandon it.” Another
argument is, “I know once it’s working, I’ll not want to go back and work through it

again. I want to go on to the next innovation.” While these are two seemingly different
arguments, the root answer is the same. Just because code is written, doesn’t mean
the problem is solved and the project is done. Write more code, and then try again and
write it well.

I’m not suggesting that you should do anything underhanded or dirty, but perhaps
you’ll have to modify your workflow. Work in a separate sandbox and only contribute
the pieces that are up to the standards that you want. Have a little self control and
pride in your work when thinking of moving on to innovation. Remember, someone else
will see this. Just because you innovate, doesn’t mean you’re great. (As for innovators,
I think about all those blog writers who write “introduction to blahblah technology”
articles. They’re on the forefront finding out all the newest stuff and teaching people the
very basics. However, they’re rarely as respected as those who apply a significant
amount of time and energy towards mastery of a technology.)

Write more code, write early, write often, and refine.

This advice is especially useful for beginner and novice programmers. Face it, you just
won’t have enough experience to come up with the most elegant and accurate
solutions. Time breeds design maturity. So, while you’re less experienced, just write
more code. Look over it and see if it’s good enough. If not, refactor and refine. You may
find yourself spending a little time planning, a medium amount of time writing, and a lot
of time refactoring. This is fine. This is what you need to do at this point in your career.

Those very experienced programmers may follow this rule, to some extent. However,
they have the skill and experience to spend most of their time planning. Then, they can
execute and create the most elegant, accurate code and programming solutions. Very
little time is spent refactoring. This level of mastery and the ability to do it right the first
time is because they have done this before. They have written a lot of code.

The paths of writing more and planning more are even slopes. As you progress through
your career and gain experience, you’ll notice that these slopes intersect. Your path

goes from one to the next. Finally, you’re starting to plan more, and write just the right
amount of code.

I can’t think of a time that I’ve ever heard of anyone saying, “Wow, I wish I wouldn’t
have written so much code in my life.” There are really no negatives about writing a lot
of code. And, since we’re in an electronic media, its pretty easy to manage. So, write
more code. Engage the brain in many ways of solving the problem. Refactor as
needed. Please, just write more code.

#10. Don’t Underestimate Analogies

A GOOD ANALOGY IS LIKE A NICE, CHILLED BOTTLE OF
BOURBON…

There is this weird, crippling fear that non-computer users have. I’m not sure how it
started out or where it comes from. All I know is that it’s real. And, believe me, you’ve
seen it. That frustrating feeling you have when explaining something technical to a
person while they seem to slink away. That’s it.

It’s that deer in the headlights shut down that happens, that unattached gaze, or the
immediate denial of being able to do what you ask. It’s quite an irrational response to
the thought of having to use a computer or understand how it works. I hate it.

But, I learned how to get past it. The key is an analogy.

Analogies are used all the time when we’re trying to explain things to each other. If you
think back to your classroom days, I’m sure the teachers and professors used these to
help explain concepts to you. Analogies offer a way of relating something that you
already know about to something that you don’t. And, as you have probably now
guessed is a common theme in this book, I’m saying that programmers have forgotten
something we once knew before we became programmers. A great way to learn is
through analogies. It’s also a great way to reduce fear.

One of the best examples I can think of involves ditching support for Internet Explorer
6. This is a real email that I sent the project stakeholder.

If we take a look at the market share of IE6 on your website, it’s small but still
measurable. I can’t say no one comes to your site with IE6, but I can say it’s under
5%. Now, I recognize that 5% of visitors is still a large number. We don’t want them
to be unhappy - and so that’s probably the reason you’re asking for IE6 support.
Unfortunately, I can’t provide that compatibility without considerable additional
cost. IE6 contains a flawed model of displaying pages, so it requires much more
work than the standards based website I made for you. Let me explain it a different
way.

I’m 99% certain that your car runs on unleaded fuel. Most cars do. However, there
is a very small subset of older cars that may run on leaded fuel. Perhaps they are
hobby cars, or they’ve been grandfathered in after our emissions and safety laws.
Either way, a very small portion of drivers need leaded fuel.

If you look at gas stations, you’ll find various versions of unleaded fuel as well as
diesel. You won’t find any leaded fuel, though. Why not? There is clearly is a
market for it, right?

Unfortunately, the market for leaded fuel is very small. However, the amount of
investment required to store and distribute leaded fuel is at least as much, if not
more, than unleaded gasoline. This means that the gas station owner would have
to sacrifice some of the space and inventory to satisfy a very small market
segment. The gas station potentially could even lose money when customers find
out that he doesn’t have enough of the fast-moving, highly sought after unleaded
fuel. So, he elects to not distribute leaded fuel. He may know a few people who are
very passionate about their needs of leaded fuel, but he needs to make the fiscally
sound decision.

In this instance, IE6 is like the leaded fuel I’ve mentioned. There is a very small
subset of people who need IE6 support, but you will have to make a choice on
how to provide this support. Either your costs increase dramatically (I don’t believe

the ROI on this investment is worth it - and yes I know I’m talking myself out of
money as your programmer!) or you’ll have to lower your features and requirements
for the other 98% of your users (which may make it harder to create conversions
into paying members).

In the end, the choice is yours - I just wanted to make sure you were aware of the
type of decision this was. I didn’t want to get you bogged down in the technical
details, that’s our job, not yours!

As you can see, it may have gotten a bit wordy and long. However, the core message
here is that I was able to explain the Internet Explorer 6 support requirements using an
analogy that the stakeholder understood. In the end, we didn’t have to supply Internet
Explorer 6 “enhancements” - whew!

There’s no way to shield “regular people” completely from the technical aspects of
some of the work you may be doing for them. However, making sure you communicate
in a way that is simple enough goes a long way. I like to also relate this idea to a
doctors visit. My best friend is a new doctor. When she starts rambling about her most
recent medical knowledge, I feel like I don’t know anything at all in life. I know she’s
really smart, but I just kind of tune out.

When I actually need medical attention, my own doctor is experienced enough to give
me the information in a way I can relate to. Only after I understand the basic
information does he go into the details I want to know. This is like the doctor saying,
“You have too high of blood pressure, you eat too much salt.” That’s pretty easy to
understand. An alternative could be where the doctor described the condition as a
dangerously high systolic pressure, usually from eating more than twice the
recommended sodium content. While that still is a relatively simple explanation, wasn’t
the first one easier to understand?

Don’t estimate the power of analogies when communicating technical information to
non-technical people. After all, most of us were taught in part by other analogies during
our youth. So why do we suddenly forget to use them when we are working within our
own realm?

#11. Give Proper Visual Cues

<BLINK> IS MY FAVORITE HTML TAG!

All good applications validate and error-check user information. The time will come
when you are required to alert the user that the input they gave does not pass the
sanity check. Usually this done via some visual notice or cue.

It is important to understand that there is a difference between what is
programmatically wrong with the data, that thing that has been flagged by the
programming logic, and what the average user will understand as the flawed data
entry. Humans interpret invalid data differently than a computer.

For example, when two pieces of information do not match equally, a logical program
deems both pieces of data as inaccurate. Both pieces either need to be identical,
making the relationship true, or the entire data and relationship is false.

That is not how humans interpret the information. Instead, humans logically approach
the data individually in a linear fashion. If the data is marked incorrect, it’s human
nature to look at the first (or last, depending on the personality… I’m talking to you
glass-half-empty people!) data piece and determine if there is an error. However, what’s
different than a logical computer program is the tendency to not consider the data
wrong when in context of the whole, but rather individually wrong. The user generally
tends not to look for the relationship error, but looks for the concrete individual data
error.

A good example of this is when there are two corresponding input forms on an
interface. Perhaps this could be a password and confirm password field. Or even
better, I have an example that recently happened with one of the programmers on my
team.

He was creating a calendar application that allowed the user to enter a new event. The
event had a title, a description, a start date and an end date. One of the validation
steps was to make sure that the end date was either equal to or after the start date.

When the programmer wrote the validation, he attached the logic to both form fields.
The code said to take both form fields and compare the values. If the first was after the
second, mark them as error. The submitted interface marked both field as an error and
alerted the user that the end date must be after the start date.

Unfortunately for the programmer, I rejected this code. I said that the error for the user
wasn’t in both fields, it was only one error. Marking both fields technically means there
are two errors. Instead, alert the user one time to say that the start date must be before
the end date. The code came back with the start date being marked with an error
saying the start date must be before the end date. I rejected this code again.

I understand why the programmer decided why that placement was where the error
should be. He was almost right, too! However, it wasn’t good enough yet. Why?

If you look at the way that people think about event dates, there is a greater chance
that they’ll know the start date rather than the end date. When you’re entering in data,
the farther down on the interface, the more you’re likely to make a mistake. Generally,
the end date is after the start date on the interface. So, combine the fact that most
people remember when their event starts more accurately than when it ends and the
location of the field on the interface, the field to be marked with an error should be the
end date. That is where the error must be shown.

To drive it home, I asked the programmer “can you imagine a time when you’re filling
out this form and you forget to fill in the end date? How about a scenario when you
filled in the end date properly, but you forgot to add a start date?” He said the first
scenario was much more likely. He admitted it seemed much more clear now.

Visual cues should be given with a thought to their context. A good programmer may
remember to haphazardly place the cues. A great programmer pays attention to
context and logical user interface.

#12. Find Someone Smarter

STEPHEN HAWKING NEED NOT APPLY

For years, I struggled with the decision of whether to frame my certifications and hang
them in my office. I didn’t want to be “that guy” who always seemed to brag about
himself. But, on the other hand, I was very proud of all the things I had learned. I had
been tested, and I had passed. I finally decided to hang them up in my office. I had so
many, I ended up having to display them on a shelf as well. If you enter my office now,
it really looks like I know what I’m doing. That, or that I’m one of the most conceited
managers in the world. Oh, I hope not!

When I work with my team, I do code reviews and architectural decisions. Each
programmer is learning, growing, and becoming truly excellent at their job. However, I
am still the leader of the team, helping make the tough decisions, dissecting solutions
and making sure our level of quality code remains high. When a programmer gets
stuck, they generally will come into my office and sit and talk over the problem with
me. Most of the time, I can help lead them to the solution that I think will be best. It
doesn’t hurt that we program mainly in PHP and I’m the author of a PHP Design
Pattern book.

In my local area, I also started a PHP Users Group. I see various levels of programmers
come and go in our group. They take turns learning from each other and teaching each
other. Generally, I don’t pick up much from the presentations, but I enjoy meeting with
the people. If I volunteer to give a talk, it tends to be pretty tough for most of the
people to follow. Some get lost in the details. Only one or two other programmers
seem to feel comfortable asking questions or challenging my solutions.

I pretty much know everything.

And, if I really thought that, I’d be the biggest jackass - and you should put down this
book immediately. But, that’s not the case.

I can honestly say that I’ve had those thoughts go through my head a few times,
though. I know a lot, there isn’t anyone who can challenge my knowledge, I don’t need
to try anymore.

But, don’t worry, I’ve been brought back down to Earth - a few times!

While in my somewhat smug attitude years ago, I went to a PHP conference in
California. There I met people who created extensions for the PHP language, PECL
programmers, and others who specialized in tuning the hardware and software
underneath the platform that was running the PHP applications. A lump flew up into my
throat as I realized how misguided I had become.

Compared to these guys, I knew nothing.

I could have wallowed in my own pity, or at the very least, stuck my head in the
sand (ostrich style)and went back home, secure in my bubble. But, I put this next
practice into effect instead.

Always find someone smarter than you! That’s what I’ve done many times, and I’m so
happy I did.

There always is someone smarter than you. For example, if you do PHP like I do, there
are people who program C modules for the core. If you are a jQuery rockstar, other
programmers specialize in just plain Javascript. If you are a great Mono or Python
programmer and can create amazing Linux desktop applications, there are others who
work on and submit code for the Linux kernel. There always is someone smarter than
you, and that’s ok.

What’s not ok is ignoring that fact. It’s not ok to pretend like these people don’t exist.
You should make contact with smarter people and learn from them.

This concept really leads into forms of mentorship. Many years ago, I read an article in
a business magazine (Remember magazines? Or should I say, have you been to your
doctor’s office lately?) that talked about successful entrepreneurs. They focused
primarily on Tech companies, so I kept reading. One of the most important things that
was mentioned as a game-changer for successful companies was the leadership team
having high-quality mentors. The article ended by stating that of all things, the most
important thing for an aspiring person in the technology field was to find a mentor.
That’s what kicked off my search.

Throughout the years, I’ve found many smarter people. When I was beginning to learn
PHP, I had a great mentor who helped me learn more and challenged me every step.
Later, when I got into business, I had a financial mentor who taught me about balance
sheets and their importance to a strong organization. I have had mentors who helped
me understand how to communicate technology to non-tech stakeholders. I’ve even
had mentors that helped me understand the importance of various managerial
decisions I’ve made. I’m truly indebted to these mentors as they’ve done two things for
me: they’ve pointed me towards a path of success and they helped remind me that
there are lots of people smarter than me.

Do you have a mentor? If so, when’s the last time you thanked them? Remember, there
is no rule, requirement, or law that people have to help each other. Mentors happen to
see value and potential in those who they build relationships with, and generally give
guidance and direction out of the kindness of their own heart (there’s actually a tiny bit
more to this, but more on that later). It’s surprising how much a quick thank you can be
appreciated by your mentor. I strongly encourage you to thank them the next time you
can. Nothing too spectacular - a quick note, a nice card, or even a Tweet publicly
appreciating them is great. In fact, if you have a mentor and you haven’t thanked them,
please go do that now! (I’ll wait. Nope. Don’t just put it on your todo list, get up, and do
it now.)

If you don’t have a mentor, it’s time to start thinking about one. Who are the people that
you know that are smarter than you? And when I say ‘smarter,’ I don’t use just one
definition of the word. This person may be more intelligent, or they may have more
experience, or just a different insight on the world. Perhaps they’ve been there before.
Perhaps they’ve even failed where you might in the future. These are the “smarter than
you” people that you should be looking for as your mentor.

If you don’t know of anyone in your immediate group of friends or colleagues, you
should look elsewhere. There are a number of online organizations that support mentor
relationships. Take the time to email your heroes in your field and ask for their guidance
in finding a mentor. (Fun tip: if you ask someone for help finding a mentor, they may
suggest some good resources for you. They might even volunteer themselves. For
some reason, my experience is if you directly ask them, they may not be as open. Not
sure why this happens, but it has to me. When I asked for help finding mentors, that’s
when I opened the floodgates.) Start looking. I’m sure you can find at least one.

Don’t get discouraged if it takes a while. All good things require effort. Also, don’t get
sad if your first mentorship relationship doesn’t work out. I’ve went through a number
of mentors in my career so far. Some work out for just a few instances or a short
amount of time. Others are longer relationships. (As cheesy as it sounds, I think of
mentorships just like the quote on friendship: friends come into your life for a reason, a
season, or a lifetime.) Just because the relationship ends, doesn’t mean everything was
a failure. Any value you got out of the relationship is a measurement of success.

Don’t forget that the mentor relationship isn’t always defined by that name. Sometimes
this person is just someone who you happen to work with, volunteer with, or know just
in passing. This doesn’t have to be a formal situation. Sometimes mentors are found in
your current relationships, you just didn’t frame it like that. The important point is that
you really need to develop a relationship with “someone smarter than you” to continue
to be successful.

On the flip side of finding a mentor is the act of being a mentor. As I mentioned above,
mentors will invest time in the relationship mostly out of the kindness of their heart.

Perhaps they’re excited to help develop a younger person’s career, love encouraging
potential, or just want to pay-it-forward for opportunities that they had. However, there
are hidden benefits, too.

There are many opportunities to learn something from being a mentor. When you’re a
mentor, you get exposed to a number of other scenarios that you might not have run
into otherwise. Someone is bringing their perspective and challenges to you and asking
you to help.

The mentor gets to learn from this by analyzing different perspectives. Perhaps you’ve
only thought of a problem a certain way, but you get to see it in a different light.
Another value is the requirement to solidify and analyze the knowledge that you already
“know.” This means sometimes there is an underlying idea or concept that you make
decisions based on, but when you need to explain it to someone else, you must think
about it and package it in a new way. This extra thought forces you to analyze what
you know to be true, evaluate it, and possibly expand on it. Then, those ideas get to be
challenged by the person you’ve explained it to. This really is a value to the mentor. By
continuing to give, they actually get more clarity and understanding of the things that
made them successful. I’ve also seen the act of mentorship really reignite passions in
those mentors who may have let certain parts of themselves go dormant.

The best way to learn something really well is to teach it. That’s why I view a mentor as
a teacher. Mentors are teaching the things they know to someone else. That forces
them to learn it better.

One of the challenges I put myself through is finding a speaking opportunity with a
group of people who may have a need to know about some new technology that I
barely know about myself. I volunteer to go speak there and introduce the topic. This
forces me to learn about the particular topic or technology. Not only do I need to know
the very basics of it, I need to concentrate on those points to clearly communicate
them to others who have not learned it, and be ready to answer questions about it. It
really forces me to learn the material well.

To me, this concept is shared with those who are mentors. When you need to
demonstrate and teach values to someone else, you really need to know and
understand them yourself very thoroughly. You must take time to explain both the what
and the why.

So, no matter what, please go find someone who is smarter than you. If you have that
person already, thank them. They’re helping you more than you realize. If you don’t
have one yet, go find one. Finally, don’t forget that you can also be that mentor. No
matter where you are in your career, there is probably someone who is taking those
same steps you did before, and can benefit from your experience and knowledge.

#13. Sometimes, Just Be Great

OR, SUCCUMB TO THE MANAGER MOTTO: “MO’ MONEY,
MO’ PROBLEMS.”

A few days ago, I was interviewing web designers for a new position I need to fill. I try
not to ask the cheesy, “Where do you see yourself in 5 years” type question. I do want
to know the answer to this, though. So I’ve come up with a different way to ask it.

The particular candidate we were interviewing was a very junior designer. He had many
years to go before he would be someone I would consider to be in the position of
Senior Web Designer. And many, many more before I thought he was experienced
enough to run his own team. So, I asked him the newly phrased question: “What is it
that you really want to be the path of your career?”

He answered in what might have been a textbook answer. “I want to put my time in to
become a great designer. In a few years, I’d love to manage a team of designers.” This,
however, is not the answer I was looking for. It wasn’t because I thought he would be
some competition for my job, but because I didn’t believe him. I wasn’t sure if he
wanted to be a manager at some time. Perhaps he just thought that was the best
answer or the right answer for an interview. I asked him that point blank: “Do you really
want to be a manager in a few years, or are you saying you’d like to contribute to the
project in a meaningful way?” He went on to explain what he thought he would like to
accomplish in his career. Long story short, he just wanted to just be highly skilled,
important and respected. He didn’t particularly have any desire to be a manager.

I’m glad I was able to determine what this candidate really wanted out of his career. I
sometimes fear that the standard career advice forces people to think that they must
be managers or business owners. Not everyone is cut out for that. Sometimes, it’s just
ok to be great.

Let me explain further - if you’re a follower of my blog, you might recognize this.

What is the measurement of a good career? Promotion? Raises? Running a project /
leading a team? Usually all of this. However, the most traditional measurement of
success in a career is moving upward. Time to run a department, time to lead a team,
etc. However, I submit a very radical idea: sometimes just be great, don’t lead.

What does this mean? Well so often, we see great engineers get promoted to be our
‘boss.’ However, when this happens, suddenly the department starts to slip, success is
lost, and this engineer isn’t as happy as he used to be. Sometimes it’s ok to just be
great at your job. Know that being the number one resource, the go-to for your skill, is
good enough. If your goal is seniority, demand it for your position. If your desire is more
money, demand it. Sometimes we think that getting to a leadership position is the only
way to gain. I would suggest to really look at this before you try to achieve it.

When you become a leader or a ‘manager,’ your responsibilities will change.
Remember that exciting feeling when you solved a problem? You programmed a
solution and it worked the first time!? This is something you won’t experience as often
as a leader. Instead, your goals will be bottom line, juggling numbers, and dealing with
people. How do you keep your department inspired and on track?

Let me break it down very frankly. There are two things to consider. First, if you want
more money, ask for it. Keep doing what you’re so good at, demonstrate and
document your value, and ask for it. Don’t take a promotion if that’s truly not what you
want. A promotion generally means not necessarily more responsibility but different
responsibility. Do you want this? Be honest with yourself. If you really don’t (maybe you
don’t like being in front of people, you like taking responsibility for yourself only instead
of a team you had little hand in with the end result, etc), don’t do it. There are other
opportunities and different jobs. There is always a different company that has the same
needs as you’re filling right now, but they’re bigger and more scaled. That will translate
into more money.

Second, are you willing to give up the thrill of the chase of programming and trade that
in for the successful balancing of numbers and managing of people? Be honest with
yourself. When you enter a room, do people congregate to you – or do you wait to be
introduced? A manager(leader) needs to have these people skills. In addition, you need
to be able to take responsibility for all the negatives for your team, but disseminate all
the accolades. Can you do this? If not, just continue to be great, don’t lead.

So, again my idea: sometimes just be great – don’t strive to lead. You may find that you
cause more harm than good, and you become unhappy. Instead, take pride in being
the best you can be at that skill you’ve already mastered. Just be great.

The point here is to remind great programmers that they can be just that: great. You’re
not less of a programmer, you’re not less of a success, just because you don’t want to
be a manager. Those who run a truly successful company - the kind that you should be
working at anyway - will value your honesty and skills. They’ll love that “you just want
to be great.”

As a manager now, I can absolutely attest that this is the truth. I always encourage my
team members to become better, more efficient and learn more skills. If they truly want
to learn more about management or product development, I am the first to support
them. But, I do not want to push them into leadership positions if they don’t want it. A
good manager shows great programmers that he appreciates the programmer just the
way they are.

Oh, and here’s a secret too: bad managers want to keep employees who have
aspirations on their own team and to themselves for selfish reasons. Good managers
want to keep star employees because they make the manager’s job easier but they
won’t stop creating opportunities for them even if it means losing them in the long run.
It’s fine to be good. It’s ok if you want to be a manager after you’ve reached your goals
in programming. It’s great just to be great.

#14. Catch Your Breath

RELAX. CHILL OUT. UNCLENCH THOSE FISTS. MAKE
YOUR BOTTLE OF IBUPROFEN LAST LONGER!

Sometimes I’m afraid to start out with cliche names. “Catch Your Breath” is often used
for so many things, you probably have no idea what this chapter will be about. Should I
be taking the time to relax on the beach when I get home from work? Should I be
planning time to play catch-up at intervals in my project? Maybe should I stop talking
to the client so much and just listen to them?

All of these things. Catch your breath, in every situation.

Because software development and technologies change at a fever pitch,
programmers are almost always rushed to follow. The newest technology comes out,
and you must know that software, immediately! (It’s even worse if you have a boss or a
client who has been ‘sold’ on this new technology by an outside consultant or 3rd party
and now believes you must have this feature in your product.) It can also be a challenge
to take a break from the project. It has to be done 3 days ago, so we need to work 24/7
on it. And if you’re like me, you’ve been in meetings with stakeholders that can’t seem
to articulate exactly what they want. It can be really easy to try to finish their thoughts
and sentences for them so you can get out of the meeting and back to work!

How about you just take a breath?

Let me address the three scenarios now in a little bit more detail.

First of all, innovators need to innovate. That’s how we get new software, products and
techniques. This is necessary and awesome. However, that’s not the path for most of

us. Our innovation comes from business process support and growth, not just using
and creating new technology for technology’s sake.

Most of us are allowed to take a breath. It is just as important to have a good base with
whatever technology you’re using as well as keeping up with the newest technology.

I used to be at odds with college degrees. I didn’t think they were really necessary in
our field. This was further compounded by a colleague of mine coming to work with me
on my team. He had a computer science degree, but he knew nothing and was nearly
useless on our team when he started. I had to teach him even the basics of developing
and deploying our software. Those 4 years of college, what worth were they? Not until
maybe a year and a half later did he finally tell me he was starting to see the
importance of his education related to what we were doing. He finally got to a point
where he was doing a little bit more advanced programming using proper architecture
and design patterns. He mentioned that some of these things he was doing now were
what was taught to him theoretically in college. Only after all this time did he finally
have some context and appreciation for the base that he was taught.

I think we both reached the same conclusion. There was indeed value in his degree in
computer science. He had the base, he just didn’t have any exposure to the practical
technology side. I think we were able to finally discover this realization because we
used the same technology for the past 1 and a half years. He was able to specialize
more in the actual technology and programming and wasn’t distracted by needing to
learn the next greatest technology. He had the time to catch his breath and therefore
relate his theoretical knowledge to his daily programming. He had time to reflect on his
tasks instead of always pushing forward with something new.

Even though we focused on the same technology for years, our products didn’t suffer.
We were able to continually produce high quality, sustainable, fully featured products
for the business without introducing new technology. There was plenty of room in our
current toolset to exceed expectations.

Because I forced the team and my new programmer to take a breath, we drew a strong
link to the value of the computer science degree. Now, this programmer learns new
technology, but has a very large wealth of base theory to integrate into each new
technology. He is on his way to becoming an expert in this field. Since we took that
breath, and didn’t run to the newest, next technologies (spending time learning new
things, reading tutorials, etc), we were able to produce better, higher quality products
for the company. I am certain that we wouldn’t have been able to reach the level of
mastery in programming and stability in our programs without this breath we took.

The next concept related to catching your breath is the strategic break from work. I’ve
touched on this before when referring to ‘do something different.’ However, this is
slightly different. Instead of doing something different, just don’t do anything. Breathe.

When we look at our ancestors, many people focus on the food and meals (in dieting
books) or the community structures (for psychology and sociology study). I would point
to a third part: Look at how they spent their day. From what we can guess, our
ancestors spent a lot of time hunting or gathering food. Then, they made their own
clothes, tools, housing, etc. However, when they were finished with this, what did they
do? Did they play XBox or continue hunting for fun? Naw. They made fires, shared
food, told stories and just relaxed in their community.

That’s the key. They relaxed. They had a hard life; they needed to really be on their
game when the time was right. It’s sad that we’ve lost touch with this. Now, instead of
having that time to relax, rejuvenate, and catch your breath, we measure success by
our ability to work more. As we get older both our bodies and our ability to do certain
tasks deteriorate. Some blame this on our society values. Others blame it on our poor
diet. I think both can be true. But, we’re also forgetting to take a breath. Relax, take a
breath. Work will be there. Taking the time to catch this breath will make sure that
you’re more efficient anyway. And who doesn’t want to get the same done with less
effort!? Don’t forget the lessons of our ancestors.

Finally, when working with a client or stakeholder, take a breath. Listen to them explain
what they want. Don’t try to finish their descriptions and thoughts for them. This almost

always works out poorly. Instead, relax, take a breath, and listen to them. Let me give
you a great example from one of my colleagues.

This friend was doing a freelance website for a small business owner. The business
owner had a smaller budget which would get them a quality, small, simple website. In
the end, that’s all they wanted. However, they took a while explaining what they
wanted.

At some point, the client said a phrase that really derailed the requirements gathering
meeting: “I want something unique on my website, that none of my competitors
have…” At this point, my friend broke in talking about the most recent technology he
had learned about. The business owner seemed confused. In the end, probably out of
frustration and confusion, the client agreed that the new technology was a necessity in
his website.

When all the planning and quoting was done, the freelancer presented a project that
was roughly 1.5 times the entire budget the client had proposed. A majority of this cost
was associated with the new technology that needed to be applied.

As you might guess, the freelancer didn’t win the contract. A competitor did win the
contract, though. I have a good feeling that they listened better to the client thoroughly.
The end result was a website that my friend could have done definitely within the
budget of the client. We both agreed that the suggested feature to make the website
new and unique using new technology was the reason why he lost the contract. He
should have just caught his breath and listened to the client.

Here’s the real funny part. We discovered what the “something unique” was after a
couple months. In the business owner’s industry, the colors that most signify a
successful vendor were green and white. The unique thing about the new website was
the addition of purple as a featured color. Purple was the unique thing and the only
thing the client wanted.

Seriously, take a breath.

Part of being a great programmer is understanding the importance of catching your
breath. Whether it’s letting the client explain their needs, mastering technology instead
of incessantly acquiring new technology, or relaxing - just a little bit - after work, these
things will help good programmers be great.

#15. Test Everything

9 OUT OF 7 USERS AGREE, BUGS SUCK

One very cold, very icy night, I was driving a bit too fast. Ok, I was driving my VW
Rabbit way too fast. Suddenly, a dog jumped out in front of me. Since I’m a dog lover, I
hit my brakes as hard as possible. I slid out of control and hit two fences and bounced
off of a F–250 truck. Side and front airbags deployed and I survived with just minor
bumps and bruises. One of the reasons why I got a VW was because I trusted their
safety record. Even in an accident, this car performed as expected. More on this
later…

As a software developer, it is very important to test everything. Test your code, test all
the scenarios that could happen, and test it in every environment that it can possibly
be used. Just because something “should” be fine doesn’t mean it will. Test it. Test it
again. Finally, when it’s done, have someone else test it.

I’ve never met a programmer who didn’t have bugs in their software. I’ve also never
met one that didn’t acknowledge the fact that they could have tested better to have
less bugs. It’s common sense, yet we seem to forget about it. Test, test, test! (Or, my
favorite excuse that I hear now that I’m a manager: “I didn’t have enough time.” Um, a
buggy finished program is the same as a non-finished program to me. Sorry buddy!)

Testing is incredibly important. (Don’t believe me yet? I suggest looking into Test Driven
Development. This whole discipline and methodology is built around the importance of
testing first.) It’s horrible that we forget it or put it on the back burner because the
standard non-programming person doesn’t understand bugs. Why in the world would
the piece of software not work as defined? They’re not programmers, so they don’t
understand the complexities required of programmers and creating something from
nothing. They just don’t understand that bugs are bound to happen. So, the less bugs,
the better. Even one bug is bad when it comes to the users.

Remember my crashed VW? Can you imagine if there was a bug and the airbags didn’t
deploy? Well, I mean, the car always stayed on the road and it never randomly
accelerated (here’s looking at you, Toyota). But when I had an accident and it crashed,
a non-standard event, the airbags didn’t deploy because of a programming bug. The
programmers could defend that I shouldn’t crash my car, so the bug is moot. However,
luckily, VW tests their cars. They test, test, test. I trust their car and their process.

In software, trust is important. Bugs erode trust. This trust is broken easily when
something doesn’t go as planned. And, remember, because normal users don’t
understand programming, they can’t comprehend the difference between different
priorities of bugs. That’s why its important to not have any (or more realistically, very,
very few). That only comes through testing.

Buggy products destroy perception even in the non-technology world. “Bug”
perception is not restricted to software, only. Imagine the first time you visited a
restaurant what you would feel if you were served cold potatoes and a burnt
steak. (That is, unless you asked for a well-done steak. And then, friend, you don’t
understand meat. Matter of fact, give me your steak, I’ve got a nice piece of beef jerky I
can trade you.) You’d not only be very unhappy with your current experience, but you’d
probably not trust the restaurant to have a replacement meal ready for you. Even if you
got a better value and a higher quality replacement meal, it just wouldn’t taste the
same. You’ve lost trust in that restaurant to meet your needs.

If you asked the kitchen staff, they might tell you what happened. They hired a new
cook and he wasn’t familiar with the stove and warming equipment. Because no one
tested his prowess combined with the new environment, he made a ‘buggy’ dinner.
Now, they might have lost you as a customer permanently. As a programmer, you need
to test to make sure there are no bugs in your product as not to lose your customers.

After a particularly long project, one developer I was working with seemed a little
stressed. He was working on the last feature for this release and was ready to push it
out to production the next day. I had to sign off on it before we celebrated the finish of
this product and release cycle. When I was running through the feature, I noticed that

he had inadvertently messed up another feature. I told him about it and he said he just
found that too. He said it’s not that big of a deal, hardly anyone uses that feature, and
he’d fix it on the next 2 week cycle release. I said that wasn’t good enough, we
couldn’t do that. We couldn’t knowingly introduce a new bug in an existing feature just
to get our new software out the door. He didn’t seem to understand why that was a
problem.

I reframed the situation by using the example of online banking. Imagine that you were
transferring funds using an online banking system provided by your bank. You meant to
transfer $400 from checking to savings. Instead, there was a bug in the software and
you transferred $4000. This created an overdraft. When you notified the bank, they
admitted there was a bug, they fixed it, and refunded the overdraft fee. Now, I asked
the programmer, how likely would you be to use the software again? He said probably
not that likely. I asked why not? They admitted there was a bug, they fixed it, and they
even took care of the fee that they had imposed by accident. He still wasn’t convinced:
“I just wouldn’t trust it - I mean it’s an online banking website, they shouldn’t have
bugs.”

As he said that, I saw his face change. He suddenly realized what I had been saying.
Any bug erodes trust. Even if you take care of it, you still cause distrust in your
customers. The last sentence I said in our conversation before he went back to work to
fix the issue was a mantra that I repeat a lot in the teams I work in. “Release the quality
you’d expect.”

It’s important to test everything. Remember, any bug affects the customers in a very
negative way. We need the trust in our software to continue to serve our customers
properly.

#16. Seek Out Feedback From Peers

IT’S THE MOST VALUABLE FREE THING OUT THERE

There are two types of programmers: great programmers who are willing to learn, and
jerks. And, I’m guessing you know both kinds.

The biggest difference between these two is ego and willingness to submit to peer
review. Think about it again: that jerk programmer you know, how many times has he
asked a fellow programmer for help? As you realize you can count the number of times
on no fingers, you may start to really grasp the difference. The non-jerk great
programmer? He solicits feedback from his peers.

Not all of us started out as talented, knowledgeable, and experienced programmers. (I
mean, I did. But your mileage may vary.) Perhaps you’re still in the beginner phase,
learning new things every day. Perhaps you’ve accomplished a lot and feel rather
comfortable and confident in your skillset. Either way, though, you can still benefit from
asking for feedback from your peers.

Asking for feedback and submitting yourself for constructive criticism allows you to
grow in a number of ways. The first and potentially most important is that whole
“second set of eyes” paradigm. Whenever you get a team of individuals, or at least a
partner, on a task, there are bound to be different viewpoints and unique perspectives.
The colleagues you’ve asked for feedback will notice bugs that you haven’t caught.
They might also help by giving you suggestions based on their own mistakes. In fact,
when you humble yourself and ask for advice and feedback, others are more than
willing to reveal their own mistakes for the sake of coaching.

Don’t believe me? Imagine someone asking you to teach them to swing a baseball bat.
If you learned this skill by yourself, you probably missed the ball many times. But,
finally, you learned how to knock that ball out of the park. Now, imagine a child asking

you for help when they begin to learn to play baseball. You can pretty much guarantee
you’d be overwhelmed with a desire to teach them all the things you didn’t know. “This
is how you swing the bat. Keep your eye on the ball.” All this knowledge is based on
the mistakes you made. This is the same in any industry, especially programming. If
you ask your peers for feedback, they can not help but give you feedback that will save
you from further mistakes.

When you ask peers for feedback, you’re saying something to their subconscious as
well. You’re elevating them to a temporary authority. You’re saying “during this task, I
imagine that you know things that I don’t know.” Whether or not you really believe that
about the programmer, this is the underlying idea and mentality. When asking for help,
you’re looking to someone who has greater resources than you. In this case, you’re
subconsciously telling someone they have greater programming prowess than you do.
This isn’t a bad thing for you. And there’s even more benefit. It not only boosts the self
esteem of your colleague, but it puts them in a position where they actually serve your
project by identifying issues and depositing their knowledge, for free!

The final way that asking for peer review creates impact is quite minimal. But, it’s
something you should realize. For some reason, computers have created a number of
interesting neurosis in our population (remember “computer panic?”). There is a
concept called “programmer envy.” The act of being a programmer actually requires a
lot of underlying competition and desire for success. If you don’t want to be a great
programmer, you may not have these goals. But if you do, you want to be the best, and
you want to succeed, you have this desire to become better than your peers.

Because of this competition, programmers develop a subconscious understanding of
different levels and roles based on your experience. If you don’t know what you’re
doing, you’re on the bottom rung. You don’t know anything. In a sense, it’s almost like
the military: “come on maggot, you don’t know anything. I’ve put in the time, you
haven’t. Step up and learn!” It’s incredibly easy for the more senior programmers to
imagine the less experienced as less worthwhile humans. Newbie, you don’t know
what you’re doing!

Want to flip things around? Ask for feedback. Right away. Humbly acknowledge that
you’re on your way, learning, and you need their feedback. Not only have you fed the
ego of the programmer by putting them on an authority pedestal, you’ve demonstrated
that you don’t know everything. You’re more than willing to learn. As a peer, but with
different experience, this is how you demonstrate your worth, your ability to be a team
player, and your willingness to learn. This whole idea helps change the thought of “this
guy sucks” to “this new programmer is willing to learn.”

Every once in a while, I’ll issue a challenge to some of the web developers on my team.
It comes in the package of “solve this simple task.” We all put our code on github gists
or pastebin and share it with each other. In this way, we’re asking each other for
feedback, all at an equal level. The first time I did it, there was some rumblings of “that
way sucks” when reviewing colleagues work. But as time has went on, I’ve actually
noticed that each programmer will give positive, constructive feedback. If they think a
piece of code can be better, they’ll suggest updates. Others will say things like, “you
know, I’ve never thought of doing it that way, that’s cool.” The end result is that I have a
group of programmers that are actively asking for feedback, leveling out the playing
field, getting rid of extraneous ego, becoming more productive and creating better
quality code.

This task can be done by any programmer in many ways. You can either ask your team
to facilitate peer review, ask your senior programmer or boss for custom peer review of
code or post your public code on open source websites and ask for feedback. Trust
me, this makes you seem like an honest, worthwhile person while enhancing the self
esteem of others that may help you - and ending up with a better product from a great
programmer.

#17. Disagree In the Form of a

Question

I’LL TAKE USELESS SUBROUTINES FOR 400, ALEX

Earlier in my career, I decided to study body language. I learned about some of the
cultures of various states, countries, nationalities, how to detect someone who may be
weaving a tale of deceit, and how your body gives away the fact that you’re attracted
to the opposite sex. (It’s interesting, certain people are known to perspire when they
have a little bit of sexual attraction. In the United States, we are taught to be
embarrassed of this. Please wear tons of antiperspirant! No one wants a sweaty dude
or chick. However, studies have shown that one of the main ways to release attraction
hormones is through the sweat. Believe it or not, you might actually be attracted to a
person more if they have a certain amount of sweat.)

During my study, I saw one particular demonstration that really drove home how
important body language is. (I still somehow find that crossing my arms is incredibly
comfortable even though it looks like I’m annoyed during meetings. Perhaps this sign of
“I don’t care” would be less comfortable if I lost the shelf of a belly towards my front?
Anyone want to weigh in? OOH Nice pun!) This demonstration was based around
personal space.

The first thing that was done was a test of face-to-face personal space during a
conversation. Two subjects face each other and have a conversation. While the
conversation progressed, the antagonist moved forward inch by inch. When he was
finally too close for comfort, the other person would say “STOP” and the distance was
measured. In the example I saw, about 16 inches was as close as the one person
wanted to be to the other.

The next demonstration was the same basic conversation with the same actors.
Instead, they both leaned against a wall instead of facing each other. As the
conversation went on, again the first person inched closer to the other. The final
“STOP” was issued at a distance of less than 3 inches from shoulder to shoulder.

That amazing demonstration was meant to show how body positioning and posture
have a great effect on the way someone is open for conversation. Those same lessons
can be translated into the world of communication in software programming.

If you’re like me, you’ve had at least one (just one??) example where you’re being told
to do a task or program something in a manner that seems insanely ridiculous.
However, it may be the stakeholder, boss, or client’s request. They’re proud of the
solution they came up with and you must do it exactly to their specifications.

And you know what this pride also brings? Defensiveness. Yup, tell them you disagree
with the solution they’ve proposed, and you’re dead in the water. No matter if you were
trying your best to get the greatest return for the investment, you are now the enemy.
Why won’t the damn programmer just do what I tell him to do?

You may want to tell them they’re wrong. It’s easy to insist that you’re right. After all,
you know best. This is what you do. All they do is sell coffee tables, but you’ve created
over 300 inventory tracking systems. You are absolutely right, they are wrong. You’re
going to continue telling them that until they believe it!

Don’t you think that might be a bit confrontational? Like having a conversation face to
face? Try aligning with them instead. Could you try forming your critiques in the form of
a question? Do you think it would hurt? I think all you want is for them to be
successful, right?

Two paragraphs ago, I meant to ignite your passion. If you’ve been programming for
even a little while, your blood boiled when I painted the picture of the demanding,
hapless client. After reading the last paragraph, however, doesn’t it all make sense?

Didn’t the idea I proposed just feel right? Could you disagree with any question I
posed?

Yes, you already trust me - you’re reading this book, so you’re going to try to believe
what I tell you. But, even if you weren’t already sold, my goal was to sell you on my
point of asking questions. Did it work? If you disagreed with anything I said, didn’t you
feel like that would be so crazy and wrong?

When you’re faced with a particularly tough truth or fact, try phrasing it in the form of a
question. Instead of, “I don’t think the next button should be at the top right,” try, “do
you think there would be any harm in positioning the button at the bottom right?” For
the mastery students, “do you think that customers might misinterpret that button at
the top right as the cancel or close button? What if we tried putting it at the bottom
right? That would still keep the flow consistent, right?”

This type of communication is also tested in the world of marketing and sales. When
you get a potential client in the form of responding to YES-based questions, the last
sales based question seems like a no-brainer. Do you lose productivity during the day?
Do you value productivity software? Do you like saving both time and money? Would
you like to purchase this software today - at a 20% discount? Yes and YES! Give it to
me!

A corollary to this approach is the multiple choice question. If you find that the decision
maker has… well… made decisions poorly, try something new. Instead of giving your
own answer in the form of a question, just blow them away with a thoroughly
researched response containing multiple choices. This is a tactic that should be used
sparingly, though. You don’t want to get your project too off the path. Just throw it in
here and there, especially when the real right answer might be too extreme for them to
buy into yet. Give them incremental choices in the form of a question with multiple
choices for answers.

When you know the right solution is not the one you’re being asked to program, try the
dispute in the form of a question. Note how positioning yourself as the choice-giver

instead of the negative denier can help you achieve what you need while adding even
more value to the project.

#18. Guarantee Long-Term Quality

Using Two Development Paths

OR FALL OVER AND BREAK YOUR NECK, WHICHEVER IS
BETTER

Having lived in Wisconsin my entire life, I have a great appreciation for our natural
resources and attractions. We have a great lake ecosystem, lovely rivers, and distinct
seasons (if you’ve lived here or been here for a little while, you understand the sarcasm
of my appreciation of distinct seasons I bet). One thing that we don’t have, however,
are the serene and lovely beaches of the coastal states. (We have some beaches, but
come on. They’re not the same. Plus, no starfish.) I’ve heard great stories about going
to the beaches, enjoying the cabanas, and swimming out into the ocean to cool off.
Those things are just not the standard fare in Wisconsin.

I think one of the most interesting things about the beaches are the sand castles. I
have always been interested in how they were made and how builders became
inspired. I used to play in the gravel pits by my house and pretend I was building nice
sandy roads. (Ok, so I’m not doing a great job of selling Wisconsin here, am I?!) I
attempted to build pea gravel castles, but somehow it just never worked. Then, on TV,
you’d see these amazing intricate sand castles. I really wanted to be involved with that.
I didn’t want to move, though.

I did the next best thing: I researched sand castle building. I have seen pictures of
some really detailed castles. One that particularly caught my eye was a three story
sandcastle between some palm trees.

I wondered how anyone was able to build a sand structure so tall. I figured that maybe
because it was next to a palm tree they could climb the tree and continue to build while

hanging from wires and ropes. They would need their tools on very long poles to reach
all sides of the castle, though. Another thought I had involved some really tall step
ladders. Perhaps a 3 story a-frame ladder would be used to raise the sculptor to the
proper height. This seemed dangerous, though. Also, wouldn’t the ladder start to sink
into the sand? By reading more, I finally found out how they built these great castles!

But first, let’s talk about how programming projects can fail. In software creation, there
are two different paths to take: innovation and stabilization. The requirements are
gathered and the software is created. This is the innovation part. New features are
created and the software is now the newest and innovative version of itself. This is
where it gets difficult.

When there is momentum in a project, it’s very easy to remain solely in the innovation
path. That is to say, once new features are created, build on top of them to make even
more features. Innovate, create, expand: that’s the software battle cry! There is a
second, equally as important path to take now, though: stabilization.

Stabilization comes in many forms. A recognizable example of this for programmers
would be bug fixes. After software is released to the consumer, bugs invariably pop up.
Part of the stabilization path is to fix these bugs. Other forms of stabilization are testing
different markets and customer types, running A/B tests on interface designs, and
evaluating the effectiveness of the newly created features.

But this stuff is boring! Let’s move forward with new features! This is where the failure
begins. You’re adding more and more features to an unstable base where no bugs
were fixed and no features were tested. Before you know it, this previously innovative
software is now a slow, feature dense (see how I didn’t say feature-rich) product that
slowly creeps along. Now, trust-eroding bugs appear, the software stops performing,
and the business either flops or the initial product is forced to be rewritten. (Trust me,
as much as you’d like to do it, almost always fully rewriting software is a bad idea.)

This is where the competitive sandcastle builders kick our butt as programmers.
They’ve implemented a perfect balance of the two paths and have both amazing and
durable products in the end. How do they do it?

When a multi-level sandcastle is being built, the bottom level is created first. Basic
layout, shapes, and architecture is created. It is far from a refined product. When the
very basic is finished, sandcastle builders use wood to shore up all the sides of the
current level, creating a stable platform for the next level. The process is repeated for
the second level. Generally, the sculptor never has to use a ladder, long stick, or any
sort of ropes or pulleys off of a nearby palm tree. Once at the top, more detail is
applied. The artist stands on this nice stable platform built of sand and wood to create
a very polished top level. Once the highest part is complete, each lower support is
removed and the same amount of detail is applied to that level. Finally, when the
builder is on the ground level, the details are finished and the sandcastle is now
complete.

This same process should be implemented when we develop software. Create the
initial features and stabilize them. Then, build on top of that and stabilize. When this
iteration of the product has all of the features that are planned, continue back down the
stable stack tweaking and refining the architecture and features. At the very bottom of
the project, then, you’ll have a fully featured, amazing, refined and stable product that
had little risk of bugs the entire time. Or, you can tie yourself to a palm tree and see
what happens.

It’s your duty to make sure that both paths are followed during the product
development cycle. This can be easier said than done, though. It can be difficult when
you have a client or a boss that keeps pushing you to do a new innovation without
investing in the stabilization portion. In the short term, sticking to your guns can be
hard and may not make you a lot of friends. What makes you the better programmer is
how you demonstrate your commitment to quality over the long term. By forcing a
period of stabilization, you will be saving the product owner from headaches in the
future. It is your responsibility as a professional to make sure you do what is best for

your customer, even when they might not realize what that is. Remember, if they knew
how to do this and what was best, they wouldn’t be asking you to do it.

I need to temper this with a bit of realism and associated business impact, however.
There are times when the customer or boss may know and fully understand the risks
involved with not stabilizing the product. As the programmer, you need to investigate
and dig in to find out if they really do understand the risks involved with pushing
forward. Make sure that it is a deep understanding and not just a surface level
comprehension of “something bad could happen.” Work with them to define what
“bad” means and what the cost and repercussions are.

In business, some success is had by taking risks. There may be times when the cost
and the potential reward is greater to the software owner than the risk involved. This is
something you must do your best to understand as well. Please make sure that your
client or boss has all of the possibilities and relevant information in the case that they
ignore your strong plea to continue on the stabilization path.

Telling programmers to ignore the requests of a boss or client can be a very dicey bit of
advice to give. Let me just rephrase what I’m telling you to do. The successful project
is one that is balanced with innovation and stabilization. You should do all that is in
your power to make sure both paths are balanced.

Sometimes programmers can get carried away - and you just smiled because you’ve
done this yourself. You may want to just keep innovating and applying the newest
features. I’m cautioning you against this, do not be the driver of all innovation. Make
sure you balance projects in which you have control between both paths. In projects
where you are not the primary decision maker, you still want to make every effort to
make sure that both paths are followed. In this case, your primary objective must be to
provide all relevant information to the decision maker regarding the best practices to
follow. Let them know in a non-emotional, very specific way what the quantifiable risks
are for ignoring the stabilization path.

In the end, once you start applying both paths to your projects, you’ll have a large track
record of successes that simply can’t be ignored.

#19. Social Capital Is Just as

Important As Skill

DOES COMPTIA OFFER CERTIFICATIONS IN “PEOPLE LIKE
ME?”

We all work on teams. This is an easy concept for those who are actually in a
programming team at an organization or company. It’s a bit more difficult for the lone-
wolf, the freelancer. But your team is just composed differently. Your team is made up
of other freelancers who have similar skills to you. Sometimes these are your
competitors; sometimes they can augment your projects with different skills. Point
being, we all have team members.

Within those teams, leaders and followers emerge. Generous team members and
leeches are discovered. Programmers who light up a room or make those in an email
conversation smile and those that suck the life out of everyone. I think it’s pretty
obvious which you should aim to be.

As you make inroads to become one of these positive members of the team, you
develop something I call Social Capital. Similar to the value of money, it is not
measured in dollars and cents. This represents the favors that you can call in. This is
the ability to speak and have people listen to you. This capital is gained from your
social circles, your network, and your team.

I’ve met some really good programmers. They are super talented at what they do. But,
beyond that, they can’t save the world. No one I know is a specialist at everything.
None of us have infinite time. These really good programmers are still struggling to
become great and successful, missing deadlines and not getting the respect they
deserve. Why?

Because while they have mastered their skill, they hadn’t banked Social Capital. Or
even worse, they don’t see the value in this capital. That’s what this chapter is about.

A significant amount of your time is spent learning the skills in your particular
programming arena. What separates the good from the great programmers is the
amount of time spent on developing their social capital. Great programmers invest in
Social Capital. These are the people who contribute to open source software, that
organize non-profit conferences, and are the first ones to answer questions on
collective sites like Stackoverflow. They’ve mastered the concept of Social Capital.

On a cursory glance, however, it looks more like they’re just generous or altruistic. But
this isn’t the case. They’re banking up this capital because they’ve learned the lesson
and see the value. And, you should be too.

What’s the use of having such a bank? What do you spend it on? Do you really need
favors?

I can think of two, somewhat related reasons why this capital matters: the too-big
contract and the too-evil boss.

The too-big contract is that gravy ship that you can’t turn away. It’s just out of reach
because you don’t have enough time or enough skill and resources to meet all of the
requirements. You know that if you can find a way to solve this one big problem, the
rest is going to be exactly in your wheelhouse and you will have a great client for the
foreseeable future.

Now, you have already probably figured out that you can outsource the tasks that you
don’t know. If you’ve done this before, you know that outsourcing can be a pain. How
do you know the quality of the people you will work with? Are their rates going to be
affordable? Do you want to base all of your success on a complete stranger?

This is where you cash in that Social Capital. Know another freelancer? Cash in that
favor and have them join your team for just this task. Normally, they might be too busy

or have higher rates than you can afford. However, since you’ve developed this
relationship with them, they may be more willing to work for you at a rate that you can
budget for this project. And, as an added bonus, because they owe you (in a sense),
you know that they will want to do their best work for you. It’s still business, they’re still
making good money, but all this extra work you put into developing your social capital
with them has guaranteed a partner to get you through this one tough patch.

I know this works. I have one particular designer that I work with in this manner. He has
a freelance business where he’s more than busy. When he gets stuck or has a question
about HTML5, Javascript, or setting up new servers, I’ll help him. He always offers to
pay me, but I decline. I’m happy to build this relationship with him, helping him,
banking up my social capital. And, in turn, every once in awhile when I want to create a
new startup venture which I’m bootstrapping (see: I have no money), he’s the first one I
will call to design the product. Even more demonstrative of this relationship, once he
hears about my projects, he’s the first one to offer to step in even before I ask. I don’t
offer to pay him, he doesn’t ask. But, if I were working for a paying client, I’d pay him a
fair rate. (He shouldn’t have to do stuff for me for free - I don’t expect work for free from
my colleagues.) Since I value his quality, his vision, his attention to detail so much,
when my project has money I’ll pay for his time without question. And I know that I’m
guaranteed his best work because of all the social capital I’ve built up with him. (If
you’re honest, when’s the last time you did your best work for say… a family member?
Yeah, probably not. You did good work, but not your best. Either that, or I’m just a
horrible person and you are much better than I!)

I try not to drop the “I’m a boss” bomb in this book, but I need to now. I manage a
group of programmers and designers. This leads me into my second reason why Social
Capital is important.

I’m going to share a secret. My team might hate me if they read this (or when I force
them to read this book and tell me how awesome I am.) One thing some managers do,
myself included, is to assign a task that we know is too complex, too long, or too
technically advanced for a programmer to complete. I do it here and there. My
expectation is that the programmer or designer will step up their game to solve this

task. Then, when we reflect on this “impossible” task that they’ve created, they are
now the proud architect. And, as a result, they’ve grown, learned, and become a better
programmer.

There’s no feasible way for these programmers or designers to do the task that I
assigned them on their own in the timeframe I’ve allowed. It’s nearly if not completely
impossible. However, since they work on a team, I know that they can lean on each
other to work out the tough tasks. Now, mind you, each one of the team members has
their set of tasks with a deadline they should not miss. Because of this, if they help
another team member, they put their own projects in danger of going late.

But, they always do help each other.

And for the most part, all projects get on time and on budget. You might say this is just
an example of teamwork, and I would agree to some extent. But, it’s also a cyclical
demonstration of the advantage of building the social capital among the team
members. One programmer might help another three or four times over the next few
projects, but knows that they can cash in that favor next time their own timeline is tight.

From a management point of view, I try to do the same thing. I have a full time job
managing the team. However, from time to time, I’ll invite team members out for a meal
or a drink on my own dime. Or, I’ll join them in programming some of the project. I
hope to help them advance their timetable or catch them up if they’re behind. Because
I do these things, I’ve develop a relationship with my team that is returned both in
quality work and loyalty. I’ve invested in social capital and I see it returned in so many
ways.

As a programmer, it can be easy to fall into the trap of just being the best at your
skillset. Accolades and fame fall from the sky as you become a technology leader.
However, the next best thing is always on the horizon, someone is always smarter.

Great programmers invest in their trade while simultaneously investing in social capital.
Go the extra mile, give, lift up other programmers, and the results will be returned to
you in multiples you may never expect.

#20. Step Up to Be A Senior

Programmer

SHOW THESE YOUNGINS THAT PROGRAMMING ONLY
WENT DOWNHILL AFTER PUNCH CARDS

Perhaps I’m the only person who pictures a balding, old man with a white beard when I
hear Senior Programmer. I even picture him getting a discount at his local diner. Maybe
I’m just weird. But, then, what is a senior programmer?

The senior programmer on a team is a very valuable position. This status could be
reflected with a higher wage, a nicer office or better access to resources (and that’s
great!) It might also be shown by the boss seeming to favor this position above all
others. Who gets the nicest computer? Senior programmer. Who is the one who gets
to meet the CEO? Senior programmer.

But, dear Senior Programmer, how do you follow up on your part of the deal? What are
the requirements for this title, the things that you must do to cement this valuable
position?

I recently promoted a programmer to the status of Senior Programmer. During our
meeting, we were talking about his concerns about this new set of responsibilities. He
gave the normal concerns but the one that really stuck out to me was his last
statement.

“Well, this isn’t going to be easy.”

No kidding! No one promised it would be easy. The promotion wasn’t meant to be a
gift. It wasn’t meant to make your job easier. It was meant to plug a hole in my team. I

needed that Senior Programmer. So, I’ll ask again, how does the Senior Programmer
provide value? What hole is he there to plug?

The Senior Programmer is no longer a task-only programmer. A normal programmer is
put on a project or a task, and that’s what they complete. They will analyze all of the
requirements for this task, provide the best estimate, and create the best solution
possible. A senior programmer does this, and then some. He looks beyond the here
and now. He thinks before this task, during the task, and after the task about all the
ramifications of this new software or project. How will this task affect other features?
What can we do to make sure this has the most impact and reward? What are the
things we have to consider after this project is complete? The Senior Programmer is
the master and keeper of these thoughts.

Since the Senior Programmer is no longer a task programmer, they must push
themselves to serve as the valuable linchpin in the team. Some teams organize
themselves in a way where a certain set of programmers are the authority when it
comes to a certain project. Each team member has some code or application that they
are the go-to resource for. Other teams are organized in a round-robin sort of project
management. Each time a new feature comes up for a product, a different programmer
is assigned. The rotation continues on each product, project and feature. However, if
you pay close attention, you’ll still notice that each project or feature tends to have a
lead programmer or champion. Generally, this is the programmer who initially created
the feature. This is the person that the other team members lean on when they can’t
immediately fix the problem.

Senior programmer, you are no longer allowed to do this. You must now know the
intimate details of all of your projects. If you don’t know something, take the time to
learn it. This position may require a bit more work initially and some research on your
point. Suck it up and do it. This is your task and your responsibility.

Consequently, you need to demonstrate this value by making sure that all on your team
know that you’re available to help them. Regular and junior programmers should be
looking to you, no matter what project, to help them. If you don’t know, you’ll find out

for them. This way, you’ll learn it and be able to help them out too. Chances are,
because of your already large knowledge base and ability to troubleshoot, you’ll be
able to ask other programmers who know the answer and get to the solution faster
anyway! The senior programmer is this connection to the team.

The Senior Programmer position is actually a lot more about giving than you may
realize. I’ve met programmers that imagine the senior position as something that allows
them to get a private office, close the door, and just nerd out all day long on complex
algorithms. Not true. The senior programmer is now the glue of the team. They not only
code, they serve the other team members by collectively taking the lead in solving
problems.

Another way the Senior Programmer serves is through the connection they have with
the boss or manager. Managers, no matter how good-intentioned, normally don’t have
enough time to develop an intimate relationship with each programmer on the team.
They should focus on their senior programmers, though. Your job as the senior
programmer is to listen to your team, and then leverage your position with the boss.
Learn to distill the team needs into something that the boss can easily hear and
understand. Give of your time to go to bat for your team. The Senior Programmer is
someone that can solve all of these problems for the team.

There is a difference between a manager and a leader. Great managers are also
leaders. But, even if you have a great manager, leadership flows down. It manifests on
many levels. Whereas all the programmers have a boss (the manager), the Senior
Programmer generally tends to act as the most connected, main “leader” on the
ground and in the trenches with the team. All of this giving and service is a reflection of
a great leader. The senior programmer becomes the glue that holds the whole team
together while simultaneously leading them through the journey.

From the other side, the manager depends on the Senior Programmer for a lot of this
connections. A manager might also lean on the Senior Programmer as the one that
comes to meetings as an analyst. Instead of having to pick what programmer would be

best for each meeting and project, the boss can just lean back and schedule the Senior
Programmer.

As you see, there are different requirements and responsibilities with being a Senior
Programmer. It’s not all about just being recognized as a better coder. It’s also about
developing a team, leadership, and being a connection for all those around you. The
Senior Programmer label is almost akin to a Team Leader label.

For those who are great programmers and want to continue to program, perhaps the
Senior Programmer position isn’t something that you should aim for. Just like when
you’re a programmer and a management position opens up, you might not always
want to go for it. But, if you find value in programming and see how a greater
connection and more leadership in your team could propel the team farther forward,
then this position is for you.

#21. Write Out Your Goals

GOAL #1, FINISH THIS BOOK. GOAL #2, PROFIT!

In almost every leadership class I’ve ever taken and every book that I’ve scanned
through (because come-on, after a while they all seem to rehash the same things,
right?), I’ve always seen one particular piece of advice that I’ve never really taken to
heart.

Physically write down your goals.

Hogwash. Why do I need to write these down? Afterwards, the experts tell you to
frequently go back and look at your goals. Some suggest putting your goals on a
notepad that is always within your sight. (How embarrassing - have a colleague in your
office and they now see your life plan on your bulletin board.) I thought this advice was
probably one of the most stupid things I’ve ever heard. Plus, as a programmer, I don’t
write things anyway. I keep all the important stuff in my head - or I search Google.

One day I woke up with a great idea for a new project. I could see the screens in my
head. I knew exactly what I wanted to accomplish. But wait… what did the screen look
like again? I freaked out because everything was already fading from my mind. So, I
grabbed my moleskin notebook and sat down and sketched out the images in my
head. Then, I made a bullet point list of the project’s goals. Finally, before I began the
project that day, I put together another list of the tools and libraries I’d need to
implement, what domain name to register, and what email service to get activated. (I
hate when stories just end like this with no follow up on the cool idea. I was going to do
that to you, too, because the end isn’t that exciting. But, here you go: I implemented
the project. It wasn’t as amazing as I thought. I ended up closing it down. But, I was
able to sell the domain name afterward for $1,000, so I guess that’s kind of a success.)

This experience made me really think about the advice pounded into my head about
physically writing down goals. Here I had this great idea when I woke up and then it
started to fade. The idea was fresh and I wanted to implement it, but I was slowly
losing my vision of it. So, I took pen to paper and sketched out my ideas. I created my
bullet point list of tasks so I wouldn’t miss any.

You wouldn’t start out a programming project without at least making a list of your
tasks and goals, right? If you’re a newer programmer, you just guffawed at this silly
statement. Just let me code! But those who have more experience absent-mindedly
agreed to this statement in that ‘duh’ way. Of course I’d write down a few tasks; there’s
no other way to begin.

So, in our profession, we create lists. We plan things out because we know we may
forget things. Even in the moment, when this project is the most important thing in the
world, we forget things. (That’s one of the reasons why programmers create bugs! I bet
there is not a single programmers out there thinking “yeah I’d like to have some bugs.”
Everyone hates bugs. And one of the reasons we have them is we forget things during
the programming process.) To combat this forgetfulness, we write down tasks. Or, if
you’re completely crazy like me, you not only write stuff down in a nice, orderly
notebook, but you have a thousand little sticky notes on your desk too (including
amazing scribbles that made sense when you drew them). Oh Sticky notes! Because
sometimes, paging through your bookmarked moleskin page takes just a tad too long
compared to the immediately available yellow pad you can scribble on and then stick
to your desk top. (Note to self: need to clean off some of this 5 year old 3M glue
residue.)

If this is all true, why is it so weird that I’d write my life goals out in the same way?

I decided to do this. I broke the list out into a few topics: professional goals, family
goals, retirement goals, health and spirituality goals, and finally charity goals.

I took some time one day to write out all my goals. I looked long term.

This was a tough day.

I had such a hard time writing down what I wanted. I really didn’t have any idea what I
wanted in my life. Somehow I had convinced myself I was on the right path, but what
path was it?

It was a really hard day.

I cried about 5 times throughout the day. I realized how far away I was away from some
goals. Other times, just coming face to face with the deepest needs in my life caused
me to lose control.

It was one of the hardest days I can remember.

It was the most valuable day I’ve ever spent.

At the end of the day, I had my list of goals. I followed all of the rules from all the books
when it came to writing them down and organizing my thoughts. I wrote them in first
person as present conditions. I didn’t say “I want,” instead I said “I have.” I put these
all in a document in Google Docs.

Some of these goals are private. I will accomplish them, but I don’t feel like telling the
world about them. I don’t mind sharing a few of my goals publicly, though.

Some of my publicly available goals:

I have started, organized, and made self-sustaining 5 community or non-profit
groups.

I bike, kayak, or walk a few miles at least twice a week. I’ve not missed one week.

I have found a faith-based community where I participate and actively learn and
grow.

I own a company that supports 50 families through employment opportunities.

As you can see, some of these goals are pretty simple. Others are lofty. Either way,
they’re my goals. I wrote them down.

The next step was setting a reminder to check them every month. At the beginning of
each month, I make sure I read through each one of my goals.

But, for those who are afraid of being pigeonholed, here’s one bit of good news. Every
month, I review each goal for two things. First, how far along am I? (I’ve created one
community group that is self-sustaining. I’m working on my second one as I write
this.) And, second, do they still make sense?

It’s not wrong to change your goals in your list. Remember, this is a guide to being
successful, it’s not the rules. So, if it’s not reflecting where your life is going, don’t give
up and throw out all your goals. Just change them.

That’s not a free pass to remove goals that are tough. But, be honest with yourself. If
your goal was to live on the coast of California by the time you’re 30, but you’ve
married and you can’t imagine a place better than being surrounded by your family and
your spouse’s family in northern Minnesota, change the goal. Find a way to get down
to the core of your desire about moving to California was, and change the goal to
reflect that. Perhaps you wanted to be involved with fresh food or technology that is
rampant in California. Well, Minnesota has that too. So, change your goal from moving
to California to becoming involved with your local technology and community
sponsored agriculture movement.

Now that I have this list, I’m surprised how many things I’ve already completed. I’ve
actually accomplished a lot! It’s a great way to track your progress.

It also helps me make decisions. When faced with a tough decision, I look at my goals
list again. I make the decision that takes me closest to one of my goals. Then, while I
don’t know if my short-term decision was right, I know I at least made the right
decision for my longer term path.

Ok, this sounds all fine and dandy, but how does this relate to programming?

If you want to be a great programmer, understand that programming is your career. A
good career is just like life. You can have a plan for it. You can have a goal sheet for it.
You are the master of your life, why are you not the master of your career?

If you develop your goal sheet for your career, it will help you make better decisions at
your job. Perhaps your goal is to be a development manager. Then, you know what
types of positions you should apply for and what size companies to work for. Perhaps
you have a goal of learning 5 programming languages in 5 years. You know you might
have to do self-study to accomplish this. Or, if your company is working you too hard
and will only stay with one technology, ever, perhaps its time to look for a new position.

Surfing technology blogs and getting certifications is a great thing to do. It sure uses
up your time and makes you feel like you’re getting somewhere. This is the same thing
as building a widget by hand. But, those who are really successful develop an
automated assembly line to develop that widget. Stop making widgets by aimlessly
‘getting better’ with technology, and build your career into an assembly line of
efficiency by writing out your goals.

#22. What to Look For In Code

Review

LOOK BEYOND THE TYPOS

Code review is a very important part of the programmer toolbox. When I say code
review, I mean from both tech leads and peers. The process of code review can be
different depending on your team and the technologies you employ. The general
premise is, however, the same: you submit a section of code for another programmer
to review. This process helps create better, higher quality code in the entire project. If
you’re familiar with my blog and follow me on Twitter, you might recognize the rest of
this chapter.

A few days ago (ok, a bunch of days), someone asked me on Twitter what I look for
when I do a code review. After thinking for a while, I’ve distilled the list of things I look
for down into something I can describe. Now, mind you, I don’t set out with my
checkbox list or a manual, I just look at the code and “feel” it. Yes, that sounds crazy. I
understand. But, subconsciously, I think I’m doing the following things when I do code
reviews.

First of all, I’m looking for bugs. I’m examining the quality of the code. In my open
source career, you’d be surprised by the number of submissions to revision control I’ve
seen with PHP or Javascript errors included (free - no charge!). I always suggest using
a lint tool before committing your changes (or uploading them via FTP, or whatever you
happen to use to deploy code).

Quality also comes from sticking to a set of coding standards. In my projects, we have
a coding standard that we use (it’s a combination of PEAR and Zend Framework – but
either of those really works). If the code strays from this too much, I will bring it up

during the review. Please don’t confuse my suggestion of sticking to standards as
architecture review. I’ll cover that later.

Next, I focus on code architecture. Of course, it depends on the level of programmer
who created the code you’re looking at, but there should always be some semblance
of an architectural pattern throughout the code in question. In cases where things look
haphazard (you know, like “and me!” or “I’m an add on!”), I’m going to note that.

It’s also important to pay attention to directions from a lead architect and proper design
patterns. Sometimes programmers will come and chat with me about a solution. I try to
guide them to the solution themselves. However, if they still need additional help, I
might tell them the solution that I’d like to see implemented. When doing a code
review, I’ll follow up on this direction and compare it to what I mentioned. If it is
different, part of my review is asking for the details on why the programmer did what he
did. This open dialog will sometimes increase my understanding of where the idea
came from. It may open up more learning opportunities for the programmer and myself.
In rare cases, if the programmer did not follow my directions and has no legitimate
reason for doing it, that would be another thing I’d bring up as part of my review.

I’ll also make sure the code appears to be “how we do it here.” That is to say, if the
team has decided on a macro structure for features, a sort of company or team design,
the code better be implemented with that in mind. That isn’t to say that I suggest
staying in a less-stable version of an architecture, but instead I strive to ensure
consistency. To state it another way, if we’re working at a mountain bike shop, we
might bring in road bikes or hybrid bikes. But, we wouldn’t bring in a car.

Don’t forget to spend some time reviewing code legibility. We’re typing, so why is this
an issue? Code legibility actually has to do with the complexity or obscurity of the
code. Sometimes, I’ll notice new programmers will create too complex code because
of a lack of familiarity with the language being used. For example, PHP has a huge list
of array manipulation functions. In my code review, I’ll see programmers unfamiliar with
these functions recreating the wheel by building their own sorting algorithms. This is

the perfect place to step in and suggest a better solution based on the language and
technology in use.

I also look at the complexity of a code block and how it is organized. Often times
programmers try to put way too much logic inside of a single method. Basically, this is
unintended procedural encapsulation. I look to make sure that a method is doing one,
or at most two, logical functions. Additional logical blocks should be refactored into
their own methods for readability, clarity, and testing. (I know I might have just sparked
a heated debate about how much logic methods should include and how to properly
build a code base, but that wasn’t my intent. I have a set of my personal beliefs, and I
aim to implement and measure them during code review.) In cases where code just
can’t be broken out or the logic is quite complex, I’ll look for comments. Most code, at
a very basic level, can be understood. However, with a complex variable variable or
polymorphic interface, this becomes more confusing. I suggest comments near code
that is not clearly understood if you’re unfamiliar with the project or codebase. I want to
make sure a new programmer would be able to jump right in.

So, these are the things that I look for in a code-review. I have noticed that I may want
to start integrating more positive feedback in my reviews as well. Basically, if you take
a lot of the opposites of what I mentioned, they’d make great positive statements, too,
right?

Also remember that the goal of code reviews is not to catch programmers making
mistakes. Instead, we should all be creating teachable moments while keeping quality
and consistent code. That’s why I often say that “I’ll bring it up” instead of “I’ll yell at
the programmer” when referring to infractions in my review process. I would encourage
you to frame things nicely and positively as well. As a great programmer, when you do
code review, you hope for the best code to make your job really easy. But in cases
where it is not, positively enforce quality.

#23. Do Something Different

ARE YOU SURPRISED? YOU SAID YOU WERE UP FOR
ANYTHING, RIGHT?

When I was very young, my best friend had a dad that was just larger than life to me.
Well, first of all, he was over 6 foot and seemed to be a giant man. But, he also was
into computers and played guitar. I looked up to him for all three of these reasons!

At one of my first “computer jobs” I remember talking to a coworker about his band.
He wanted to release his own CD. I decided to create a website for his music.

When I do public speaking about the topics in 33 Things, I usually like to ask “who
plays a musical instrument?” Without fail, more than two thirds of the audience raises
their hands proudly. (After the first three times, I remember thinking that I must have
stumbled upon something here…)

Looking back, I realized that every single technology job I worked at had a larger ratio
of musicians than the rest of the population. I personally have been playing guitar since
I was 14. I even created, wrote, and produced my own solo album.

Perhaps to be a great technical programmer, you have to play guitar!

Or saxophone?

Or piano? Some instrument?

No, that’s wrong. However, to be great, you need to remember to do something
different. Do something besides program. I know this can be difficult, especially when
you’re passionate about your project and your work. I remember many years working

full time and then coming home and continuing on the project work until the wee hours
of the morning. I seemed to have amazing output, but I was working sometimes up to
20 hours a day.

Then I hit a roadblock. When I compared my output to my peers, I was blowing them
away. However, they seemed happier, and were involved in multiple activities, sports,
and even family time. I was doing none of that. I then compared myself to some
geniuses in my particular technology field and realized my output was nothing
compared to them. Wow! How can this be? I only spent 4 to 5 hours a day non-
programming!

That’s when I realized that I could become a better and more efficient programmer by
doing something different. That doesn’t mean that I was quitting programming, no sir! It
meant that I was going to spend my time programming, but also dedicate some time to
other tasks. Maybe all these musicians knew something I didn’t. (Sudden confession
time: though I had been playing guitar since I was 14, the more serious I took my
programming career, the less I played. I found that I’d play less than once every few
months before my realization.)

I started practicing guitar every night after work. I found myself working about 12 hours
on programming, 2 hours of playing music, and the rest relaxing and sleeping. My
output was even slightly higher! I continued down this path until I came up with a mix
that is perfect for me. Now, I spend more time with friends and family, create amazing
programming projects, plunk away on my guitar here and there, and still educate
myself in business and management.

Now, I’m not saying you can never program when you get home from your
programming job. If you must for short periods to keep on a deadline, fine. But,
evaluate your deadline afterward and make sure you don’t get stuck doing that again. If
you really are passionate about programming, make sure to do a completely different
discipline after your main work. For example, when I was at a job a few years ago, I
would architect very modular and enterprise level PHP and MySQL. I worked with
message queues, object oriented domain designed classes and services, and tweaked

as much performance out of my database as possible. Sometimes, when I really
wanted to do a little nerdery when I got home, I would experiment with the
development releases of Chrome and Firefox to test out their support for the new
HTML5 spec. I technically was still programming, but I was doing a completely different
discipline. I was engaging a different part of my brain.

The goal of doing something different is to engage all parts of your brain. The Right
Brain is used for artistic things (music, painting, designing) whereas the Left Brain is
used for more logical tasks (programming, performance measurement, arranging a
sound structure). As you do something different, you engage both parts of your brain.
While I’m not a certified “brain-expert doctor guy,” I can tell you for certain there is a
benefit to doing this. At the very least you will have the same output for a shorter
amount of time. Chances are, though, that you’ll be more imaginative and creative. You
may even start to see the art in your code!

Do something different. Pick up a musical instrument. Acoustic guitars can be
purchased very inexpensively at rummage sales, craigslist or even your local music
shop. (My first one was a $5 P.O.S. brand that would untune itself after an hour.) You
might even mention your desire to learn to other programmers you know - I’m sure at
least one of them has an extra guitar they could lend you to check it out. You can take
lessons, try to figure it out yourself, or watch countless YouTube videos to learn your
new instrument. This is just another challenge like a new programming language! Oh,
and bonus! You already type, so you have significantly more control of your fingers
than other beginners will have.

Do something different. Start creating some sketches or art. Almost all of us drew
interesting little pictures when we were younger. (You probably know when I say
interesting I mean not museum-worthy, but who cares!?) When did that desire go
away? When was it suddenly not ok to create art for the sake of making art? Next time
you want to mock up a new interface for a project, complete the task as you normally
would. Later, take home this idea and try to make it even more detailed with pencil and
paper. Or, you can explore other creativity by installing things like Photoshop and edit
some stock photography. There are many Photoshop tutorials online that teach basic

photo editing to advanced creation of art from scratch. Are you more extreme? Your
local department store probably has some inexpensive canvas and artistry paints near
the crafts or kids section. You don’t have to be a kid to use these. Grab a new set and
start painting. See what happens.

Do something different. Read a book. You remember those, right? I don’t mean read
some interesting blog entries about being frugal or traveling the country. I mean, grab a
fiction book or a biography and commit to reading it. (I found that while I like the idea of
Kindle or iPad reading, I still get real books. Something about being purely
disconnected while enjoying the book still speaks to me.)

A mentor of mine once told me that I should start reading famous biographies. I
protested saying that I really didn’t like history. I remember him laughing and saying
“You, and every other 20 year old.” He went on to say that he figured out a long time
ago why young people never seemed to like history. It wasn’t history itself, it was their
lack of understanding of the point of studying history. They just finished school, so they
were purely trained and intent on knowing the facts. And, he said, history facts, dates,
and names can be boring. He said the study of history was something different.
“History isn’t so much the what, it’s the why.” That has stuck with me for years! That
last sentence made all the difference to me. I started reading historical works, not to
know what year George Washington became General or when Susan B Anthony was
drawn to the temperance movement, but to understand why they chose these paths
for their lives.

There are three books that I’ve read in the last few years that have greatly shaped my
personal and professional life. I made the commitment to do something different, and
I’ve been rewarded.

“Losing My Virginity” by Richard Branson made a great impact on me. I’ll try not to give
away all of the secrets of this books or ruin his stories, but I can say a few things.
Branson had both success and failure in his career. He tells the story of his various
wins and losses, and the decisions he made. Now, I would consider him pretty
successful. What I learned from this book: “Don’t be afraid to take a gamble.” I relate

this to the programming world in a few ways. First, while staying in the bounds of what
the client or stakeholder needs, you can still take some risks and gambles. Don’t be
afraid to make small decisions on their behalf. Of course, don’t get crazy, but don’t be
afraid to gamble either. The second way I relate it to programming has to do with new
technology. Most of the people that are super successful in our industry took the
gamble. They saw a new trend or technology and went at it full-force. These are the
people we all look up to, they gambled and won. It may be easy to sit back and go
where you’re needed, but if you want your own record label, mobile phone service, and
airline, take a gamble!

The next book that I really enjoyed was “Decision Points” by George W. Bush. I don’t
think many would argue with one simple fact: during his presidency, there was a lot
going on. Depending on your political beliefs, he either became one of the most
respected or most criticized presidents in recent U.S. history. I remember being very
interested in following the news stories during his presidency. I was interested in seeing
how the war was going, how the economy was doing, and his response to the United
States’ largest terrorist attack. In his book, Bush described a little bit more about each
of the main decisions in his presidency. He explained information that the general
public might not have gathered from the media reports. He admitted to his mistakes,
but also defined the reasons for his other, less popular decisions. Regardless of your
opinion of his decisions or him personally, the book is a great read. The biggest thing I
took away from this was some clarification in some of the decisions he made that I
didn’t agree with. While I may or may not have changed my opinion of those decisions
after reading the book, he did explain and point out a lot of other things that I didn’t
know about. I learned that there is always more to a decision than meets the eye. I feel
like this is also a very good point for programmers to grasp. I’ve heard the phrase so
many times: “oh that’ll be easy” or “I can get that done really quick.” Inevitably, the
project is late or that “real quick” turns into 5 to 10 times longer than expected. There
is always more to every decision than meets the eye! Take the time to analyze all parts
before making the decision.

The last book I’ll mention is “Confessions of a Wall Street Analyst” by Dan Reingold.
This book gives an insider look at the analysis that was done for large companies like

WorldCom. Reingold explained some of the tricks that companies were using to inflate
their value. He also pointed out places where analysts, including himself, missed the
boat. The main thing I learned from this book was simple: You don’t always know what
you thought you did. Programmers will get in trouble if they assume too much. I can
think of a few times where I gave quotes and commitments based on a very large
assumption. I never disclosed that I was assuming so much and therefore I failed to
meet expectations. Programmers should make every effort to make sure they are
aware of all aspects of the task or project.

Are you looking to take your skills to the next level? Do you want to create even more
output and possibly work less? Then, do something different!

Managers

There are tons of great books out there that are written by people with more training
and more experience than I have regarding proper management. I’ve read some of
them and they helped me formulate myself into the manager I am today. This section is
not a replacement for them.

Instead, this section is aimed at managers with a technical background. I’m going to
communicate some of the most important things I learned about managing a group of
programmers and interweave that with my experiences as a programmer.

Just because you’re a programmer now doesn’t mean you should skip out on this
section. I would encourage you to read this as well. You never know how these things
will apply to your work now and in the future.

If you were promoted from programmer to manager, this is for you. If you’re just new to
managing a programming team, this is for you. If you’ve read every management book
under the sun, this is still for you. You may see parallels in what you’ve read, but the
added spin of being from a development background is the extra qualification that will
really put you over the top as a great manager.

#24. Make Face to Face Work

THIS IS WHY YOUR PARENTS SPENT ALL THAT MONEY
ON BRACES

In a world where instant message, text messages, and email rule, the written letter
languishes as a decrepit communication tool. Who writes letters anyway? (I’ve had the
same 40-pack of forever stamps since… well, since forever stamps were first released. I
have 3 left. I think that should last me at least two more years.) But, you’d be surprised
at the response you get when you send a written letter. I’m not talking about the letter
that Grandma sends on your birthday with the world’s crispest $10 bill. I’m talking
about a real, live letter, from one colleague to another.

When you get this letter, you barely know what to do. Is this junk mail? It looks like it
has come from someone you know, so probably not. You slowly open the envelope
with… your fingers (who needs envelope openers anymore?) You get a papercut and
proceed to bleed all over the enclosed letter (well maybe I have worse luck opening
letters than you do). You read it, hold it in your hand, and somehow seem to smile.
Someone wrote you a letter.

The simple act of writing a letter made a difference. It was unique. And if the sender
asked you to do something for them, it was effective. Somehow, you just did it. You
bowed to their demands. They did, after all, send you a letter. Through the mail. It had
a stamp. They paid to send this to you.

These feelings you get from a letter are studied in detail by direct marketing mailing
response firms. They know everything there is about this tool and they use it effectively.
These companies know there is a difference between sending an email to a mass list
versus directly mailing you a letter. (What’s the difference? Why does this work? That’s
the topic for a whole other book.)

But, there is something important to notice here. Even with all the other ways to
communicate now, a letter triggers a response in a unique way. It has a certain effect.
We’ve been using letters since we settled our country. (Actually much, much
longer.) This was the only way to communicate. It kept relationships strong, is the stuff
of love movies, and was the final note on business negotiations for decades. Letters
reigned supreme for way longer than any of the readers of this book were alive.

Recently, we moved into the world of electronic communication. The wave of the
future! Let’s replace the tried and true letter with a low cost, super high available
communication method. It works, and it works well. However, I would be one of those
that would argue that just because something works better, you shouldn’t completely
abandon the older ‘technology.’ I mean, we have classic car shows and antique shops.
The letter is an antique. And, as my story has demonstrated, even more valuable at
times.

The letter draws parallels to other real time communication. In modern business, you
now have so many choices for real time communication. You can text, you can instant
message, you can call on the phone (who does that anymore?), or you can join a chat
room. (Want to know how to really prank me? Join my team as a programmer and
master the intricacies of smoke signals for real time communication.)

And then you have the last technique anyone seems to want to do these days: face to
face. Face to face is almost today’s postal letter it seems. Why would I get up and walk
over to the office of another person if I could just send them an email?

Something special happens when we communicate face to face, though. We develop a
relationship and communicate non-verbally. This actually helps us to be even more
efficient.

How!? How can it be more efficient to walk over and talk to someone than to send
them an email? Let’s look at relationship and non-verbal communication.

When you build a solid relationship with someone, they are more intune to your
communication style. Because of that, you have to explain less. They just ‘get you.’
Granted, you can develop relationships through text alone; many dating websites have
proven this. But, we still meet people in person to take it to the next level. Face to face
has something to offer: the efficiencies and rewards of a relationship.

The second is the non-verbal communication. True, if you’re programming and
speaking simply in code, you might not fully see how the the statement that 94% of our
communication is done non-verbally applies to you. I get it. But, as a manager,
chances are you’re speaking less in code, so you don’t get to use this excuse. And,
since you are a manager, you like numbers now. (I know you have at least one
spreadsheet in your inbox.) Let’s break this down into efficiency numbers.

You have something you must communicate. It is an important thing that the team
must do. You have to communicate the urgency and importance of this particular
message. By the numbers, only 6% of the message is communicated verbally. That
means to get 100% of the message across, without face to face interaction, you must
invest nearly 17 times more into the conversation using text. If you could speak face to
face, the numbers say that you could get this done 17 times faster, or more efficiently.

Of course, that was kind of a fun and silly exercise. But, let me put it into an example
that might make it easier to understand. You have something important and urgent that
you must communicate to your team. If you sent an electronic message, you could
communicate this topic. However, it can be difficult to tell how urgent the need is and
how totally passionate you are about this thing you’re communicating. This means that
you’ll have to decorate the message with more description indicating the importance.

The message becomes longer. Those with short attention spans stop reading and just
scan your message. All this effort you made to make the point stronger is actually lost
and the message is diluted. Now, imagine doing this face to face. Normally you might
walk into your team’s area and communicate information out loud and informally when
it’s not too important. Today, you ask everyone to turn around and stop working. You
take a seat in the middle of the group, sit up straight and slightly lean forward. You

communicate with a calm yet stern tone what you need the team to know. There is no
doubt that this message is different and the team should listen. You really care, it’s
important and it’s urgent.

Face to face communication is the key. And as a manager, you need to understand
this. Programmers might be more willing to IM, email or even text and shy away from
face to face communication. You’ll need to force them. But that’s ok. In the end, it’s
worth it.

The way I’ve implemented this in my own team is by having a face to face meeting with
each of my employees at the beginning of the week. This time face to face helps me
build a relationship. Because I meet with each person individually, sometimes I have to
repeat myself. But, I invest in this repetition because I know that my message has hit
home more thoroughly through the relationship I’ve built. I’ve more efficiently said my
piece face to face compared to generating some super long email talking about each
project for this week that the programmers may likely ignore till lunch (or later!).

Another thing I do goes hand in hand with the ‘open door policy’ you hear many
managers boasting about. They may keep the door open, but when you walk in, you
feel like you’re interrupting them. Well, you are. But, that’s their job. If you continue to
compose an email, making the team member wait, you’re being a jerk. I bet this person
doesn’t really come into your office that much anymore because of this. Remember, as
a manager, your primary job is the management of your team. The rest is less
important. Stop being a jerk with an open door.

When programmers walk into my office, I do two things. First, I immediately stop what
I’m doing. I greet them and turn all of my attention to them. And second, I physically
turn my body towards them. I want them to know that we’re face to face. I want to
show that I’m valuing what they have to say. This allows them to ask their question or
communicate their concern in the most efficient manner. You know what it’s like to go
to your own boss with a concern? It can be hard. It can be intimidating. By removing
barriers, stopping what you’re doing, and giving them the 100% communication
offered by a fully committed face-to-face conversation, you’re reducing the amount of

communication required to get their points across. They will appreciate this for both
the reason of having to communicate less and the respect that you’re showing them by
making them the center of your world for this short time.

Face to face communication can be hard when you’re working with people working
remotely. I understand that, but in this age, there’s really no excuse. Webcams are
either built into laptops or for sale under $30. Free services like Google Hangout or
Skype exist. Take advantage of these. While you’re not physically face to face, you can
see them and they can see you. (Plus, if you’re working with remote people, this might
encourage them to put pants on just this one time during the week!)

There’s no excuse not to have meetings with remote workers ‘face to face’ over video
conference. It might seem weird at first, but before you know it, it becomes second
nature. One word of warning, though. If it is at all feasible or possible, do not rely on
video conference if you can physically meet in person. Only use video when you
absolutely need to.

I think face to face communication is one of the basic human needs. And dear
manager, your programmers, deep down are human. Give them the gift of being able to
speak to you face to face while you enjoy the efficiencies and benefits of it. To be the
best manager you can possibly be, just show your face.

#25. Learn to Do What They Do

IF YOU WALK A MILE IN THEIR SHOES, YOU’RE MORE
LIKELY TO REMOVE THE STONE

If I had a chance to take a poll of all the programmers in the software companies, I bet
I’d find out that their number one gripe is that managers have no idea what they do.
The runner up would probably be a substitution of “manager” with “Project Manager.”
After that, various other gripes about those involved in the project not understanding
the complexities or technologies involved.

If you’re a manager who has previously been a programmer, I’ve got a tip for you. Don’t
forget to do what you used to do. Take some time out of your day, week or month to
make sure you keep the set of skills you have current. This will benefit you in two ways.
If you ever get downsized, you can still jump back into the programmer role. (Or
become a freelancer.) Either way, you’ll be able to earn a wage. My experience has
shown that a manager is a hard position to find and fill (maybe because it seems that
they are rarely let go?) The second benefit of staying current with your skill is that your
team will notice that you still care. You’re a manager, sure, so your work responsibilities
are different. But, you’re not forgetting where you came from.

It’s even more important to take extra steps if you’ve never been a programmer. You
may never be able to program like those on your team, and that’s perfectly fine. That’s
probably even a good thing. It helps you have a different perspective. But, in order to
do your work properly, you need to have two things: an understanding of the assigned
tasks and the respect of those who you lead.

Understanding new projects and the tasks required to complete them is easy. Really, it
is. Just take some time and sit with your programmers and ask them what they’re
doing. Tell them you’re not there to try to slow them down (if you can work extra time

into their schedule for the inevitable delay you cause, even better!). You’re not there to
judge them or watch over their shoulder in a negative way. You just want to get a
deeper understanding of what their day requires.

I think about the show “Undercover Boss” and how valuable those days undercover
can be for the leaders and CEOs. They get to learn firsthand what it’s like to do the job.
But, here’s where it’s different. The undercover boss (or yourself in our example) has
the authority and ability to correct some of the wrongs that the employee may not be
able to themselves. If you have to do an annoying task yourself, you’re much more
likely to want to fix that process for the staff. If you never had to do it yourself, it’s
pretty easy to just ignore the complaining or assume it isn’t as bad as it’s described.

Another way to stay in tune with your staff is to take a class. You can go to a free or
cheap online class. You may even want to enroll in a technical school or online college
for a short amount of time. Get educated about what your team is doing on a daily
basis. This will not only help you understand the tasks better, but it will also garner
respect from your team. They know you want to keep up with them, not just bellow at
them to do it better, cheaper, and faster.

Speaking of respect, that’s a bonus added to your toolbox if you learn to do what your
employees do. They may want to mock you (to your face or otherwise) for being so
poor at the skill, but deep down they will respect you for taking the time to learn about
their tasks. That’s the best way to be a leader is to show that you’re willing to do
whatever they do. Never assign someone a task that you’re not willing to at least try to
do. If you fail, that’s fine. The goal isn’t to be a great, well oiled successful programmer.
That’s why you have your team. Your job is different so this failure is ok. Remember,
though, one key responsibility of your job is to understand your team’s job.

Everything your team does is important. If you have designers, learn about the design
process. Take some classes on design theory and color choices. Learn to do a basic
“hello world” program in each of the languages your team uses. Learn to compile and
deploy the software. Join your tech support and technical writers as they attempt to
explain the features. Write a chapter of the manual yourself. Submit it to the team to

“peer-review.” Learn what it’s like to do what “they” do and you will do your own job
better. You will be on your road to becoming the best manager you can be.

#26. If You are Seducing a Developer,

Follow-Through Is Key

SOMETIMES IT TAKES MORE THAN ONE DATE TO KNOW
IF THIS IS “THE ONE”

I’ve had my share of struggles finding developers to fill positions on my team. But,
every one I have is the exact one I needed. I took the time to put out a job opening,
follow up, do research and seduce a great programmer. I don’t take the attitude that
they should be lucky that they’re getting a job. I realize this is a two way street. I need
something from them, so I seduce them. I rambled about this on my blog after I had a
particularly silly conversation with a recruiter once.

I remember a scene from “A Night at the Roxbury” where the less-than-slick brothers
take some girls back to their room and have a problem closing the deal. One of them
keeps saying pickup lines while he has the girl sitting on his bed. She basically says ok,
we’re past this. He just can’t seem to close the deal no matter how much she wants
him to.

That reminds me of what happens sometimes when I watch recruiters and other
business people when it comes to seducing developers to projects. They pitch a great
idea, get a little bit of interest, and then stop there. They don’t close the deal. They
offer things but never follow through.

I’ve been hearing for the longest time that it’s very hard to recruit for PHP developers in
our area. I’ve seen offers from recruiters for these jobs to those who aren’t looking.
Even if they pique a little interest, the recruiters never follow through. Let me give a fun
example.

Recruiter emails: here’s a great job for you if you’re looking.

Developer: No Thanks.

{{ crickets }}

Hey – that’s not follow through! Why did the developer say no? Because he’s not
looking? Or is it because the job doesn’t suit him? Recruiter, you lost out on gathering
some more information and possibly getting this programmer as a hire. Here’s another
example.

Business owner: I’d love to buy you lunch or a drink and just talk – see if you can
give me some advice about some upcoming projects.

Developer: Cool, let me know.

{{ same damn crickets }}

In both scenarios, the initiator probably wants the developer for their team. But, there is
no follow through. However, there is hope!

Recently I’ve been noticing the recruiters follow through a little with a response saying
“Thanks.” Not huge, but it’s making progress. But, you need more follow up than this.

Dear business owner, manager or recruiter, let me tell you a truth that no programmer
wants to admit. Computer “people” are not the same as you. Every group of people
have their own traits and some generalities seem to hold true for them. In the
programmer world, these can be at odds with bubbly owners and recruiters. (Ok fine,
some of us can’t stop talking and want to be your best friend, like a little puppy. But,
that’s not the norm.) Now, I don’t want to offend with generalities, I’m only working
from my own experience. But, I’ve noticed a higher percentage of nervousness, a

greater fear of the unknown, and a high propensity to do anything to avoid situations
with failure and social risk in programmers.

So here’s my advice: Follow through. Let’s do the scenarios again.

Recruiter emails: here’s a great job for you if you’re looking.

Developer: No Thanks.

Recruiter: Alright! Thanks so much for taking the time to get back to me. Really
appreciate it. I know not every opportunity is a great fit at this time, but do keep me
in mind if you’re looking for any new challenges. I’ve got a few positions that offer
unique sets of rewards for the right individual.

Oh, and dear recruiter, if you’re local, build some bonus points. Continue with this:

Recruiter: Actually, if you’re a coffee addict like me, could I buy you some coffee at
Starbucks next week? I could use some insight from people like you to find out
how I might find other qualified candidates.

Programmers are people too. And, people like feeling important and wanted. The fact
that you’re following through really displays this. Plus, through this time you invest, you
get to know the person, and determine why they may have turned down your original
offer. Maybe they really are looking, but the job wasn’t a fit. Now you have a chance to
develop a profile on this candidate to help them out in the future. Let’s look at the other
example.

Business owner: I’d love to buy you lunch or a drink and just talk – see if you can
give me some advice about some upcoming projects.

Developer: Cool, let me know.

Let’s take a quick pause and try to predict what each is thinking. My guess is that the
business owner is thinking, “well I’m pretty busy so when the developer has some time,
he’ll email me.” The developer is thinking, “That seems cool, and I know business
owners are busy, but why isn’t he getting back to me?”

Here’s how the follow up should go:

Business owner: Excellent! Next Thursday looks pretty open for me. Would you like
to go to the local Chinese restaurant at noon? If there is a better time, let me know!

These little bits make a difference. No matter if you’re a recruiter, owner, or a manager,
you’ll need someone at some point. If you’re trying to seduce someone to a job, follow
through. People sometimes need that extra little push.

#27. Motivation Isn’t Always About

Money

THAT DOESN’T MEAN SHINY THINGS AREN’T
DISTRACTING, THOUGH

When talking with a member of my team the other day about a wage adjustment I gave
him, what he said surprised me. “Yeah, the raise isn’t really all that important to me.” I
was taken aback. I thought everyone was driven by money! (At least, that’s what you’d
believe nowadays from all the special reports on television about Wall Street and
corporate greed. Money, money, money!) I asked more about what was important to
my new favorite programmer. What motivated him? “I have things to learn and ways to
grow. I get those chances here.”

What a simple answer. The honesty of this answer amazed me. I know I’m doing
something right if he’s willing to tell me that money isn’t important. But, I still didn’t
really believe it. Not fully.

Then, I began to think about others that are on this and previous teams of mine. There
are some that are motivated by money. You can almost always pick these out of the
crowd once you know what to look for. The money hungry are always trying to scheme
a different way to get more money. They measure success by the size of the paycheck
and by the quality of the car they drive to work. These are the people who ask about
raises if the review has been a week late. These programmers ask about the wage
during the interview. They clearly are driven and motivated by money. (Somehow, I
imagine them all to have really flashy shirts, jewelry and slicked back hair. Oh, and shiny
shoes.)

Others are motivated by convenience. That is, they’ve been doing the same job over
and over for many months, years, or decades. They enjoy knowing what they’re going
to do when they go to work. In other words, they don’t like surprises. It fulfills them to
do the task put out in front of them. Want an extreme example? Check out the
documentary Jiro Dreams of Sushi. This sushi master has been doing the same tasks
for decades. He loves it and he wouldn’t have it any other way. The simple task of
doing his job, yet always improving, is what drives him. It motivates him. He is
absurdly, insanely happy doing the same thing over and over.

In the same vein of convenience, perhaps the job is close by the programmer’s house.
Or it’s on the way so he can drop of his significant other on the way to work. Or any
number of other conveniences and comforts you may not know about.

Others enjoy the challenge. Yeah, they could make a lot of money sitting in a cubicle
sporting the newest Hugo Boss suit, but they’d rather work here. The challenges
presented are what drive them. They have managers and project leaders that can
throw tasks at them that seem impossible. But, this programmer will find a way. They
love these challenges. They love their drive home because it gives them even more
time to come up with the best, most elegant solution to an otherwise unsolvable
problem. (Once the challenge goes away, no amount of money or promotion can keep
this person. They’re moving on to the next challenge at the next company.)

Returning to my original example, others are on your team to learn. I see this definitely
in some of the younger programmers on my team. They have learned enough now that
they could leave my team and perhaps join a team in a company that could pay them
more money. But, they have their eyes set on the horizon and can see even more
learning opportunities possible. They know their job is secure. They can find value in
learning from and working with those who have many more years of experience. The
learning opportunity is what drives them. Here, they are getting paid to learn.

As a manager, it’s your job to pay attention to each employee and determine what their
motivation is. And, news flash, their motivation most likely will not be the same as
yours. You need to cater to what each individual needs.

My current team of programmers is very highly motivated. For this book, I really tried to
pinpoint what I do to help motivate them, and I couldn’t really come up with an exact
reason. Then, a trusted peer told me I said something once that really resonated with
him. He said that if I say that same phrase to my own team, no wonder they’re
motivated to stay and work with me. This is what I said:

“When you work for me, I will make it my number one priority - I will go above and
beyond - to make sure that I make opportunities for you. If you want to learn more, I
will find the budget for it. If you need time off, we’ll make it work. If you want to
program a particularly tough task, I’ll assign it to you. In return, I know you’ll work hard,
be honest and loyal. If there is ever a time when I can no longer make opportunities for
you, I’ll be the first to tell you. And, I’ll look forward to working with you to find the next
place that you can work and be successful beyond your wildest dreams.”

I barely remembered saying that, but I did. And when my peer mentioned it to me as
something that was particularly important to him (something he implemented in his
own team), I realized it was the key to my team’s motivation. Some want money. So I
go to bat for them. 3% raise this year? How can I get this programmer 5%? Some
want to learn. How big can I make my training budget? Some want a challenge. How
do I challenge this programmer yet keep us on task to solve the business problems?

I used to think that the easy answer was to throw money at the problem. You want the
best programmers, throw money at them. This isn’t the case. It’s all about finding out
what the true motivation of each programmer is and making sure you fit that need. (As
a side note, some of the best, most highest paid programmers I’ve met don’t care
about the money. They simply raise their rates because of the law of cost and supply/
demand. They need to be careful with their time, and high rates guarantee that.)

#28. Programmers Are Like

Rockstars

LUCKILY, WITH LESS INSTANCES OF LEATHER PANTS,
THOUGH

Creating product, building revenue and profit, and reducing waste are all things that are
highly prized and studied in the manufacturing world. We’ve been producing things for
such a long time that we now know how to get the best performance out of each one
of our tasks. We know there are different types of assembly lines that operate, different
performance metrics that can be used to measure output, and all kinds of ways to get
more of the same product out in less time.

Manufacturing is not easy. But, in general, we know how to do it now. General
managers of production plants can sit down and develop spreadsheets and scenarios
to measure output and productivity. If your shop makes 100 widgets today, and 105
tomorrow, you’ve created a measurable gain. It’s pretty much a linear style of creation
which comes with a linear style of management.

Now, think about some famous artists. They create paintings or sculptures with
amazing style and tremendous beauty. When they’re done, they’re done. No one really
knows when the next piece of art will be available. That’s fine. When the artist finally
releases a piece, you can be sure that it captures the essence of their message and
embodies their soul. This is now displayed proudly or perhaps put up for sale. It can be
days, weeks, months, years - who knows - before we can find a way to measure the
return on this piece of art.

And somehow, this is ok. In fact, this whole idea is welcome (well, tell that to the
starving artist). Artists can be eccentric, they don’t need a schedule, and they don’t

need a predictable turn around time. There’s no real management here. No one is
measuring them.

Now, let’s jump between the two extremes to talk about rockstars. A musician goes
and creates a brilliant piece of art. They put everything they have into the words. They
toil along until every note is perfect. Then, they release the art and it’s done. It’s
available to be appreciated.

But what does a rockstar do next? They go on tour. They have to take this beautiful
piece of art they created and duplicate it flawlessly many times. They’re attached to it,
they love it, so it’s not that hard the first few times. As time goes on, though, to them it
becomes drab and old. They may be so bored with playing it that they talk bad about
the song even.

But don’t you dare tell them it’s bad. You can’t agree with them. Want to see someone
prickle up real fast? Agree with that musician that his song sucks. Who are you!? You
can’t write a song this good. This is a part of me. Don’t say that!

But even though the song is old and boring, they get up again and play the song. You
know when you go to the concert, they’re going to play the song you know.
They’ll (try) not forget any words and aim to play it perfectly. You can measure the
success of this rockstar by how many seats they sell each night. If you raise the prices,
and people still buy the tickets, and the rockstar is more successful. As the artist gets
better and more famous, you definitely can raise the prices because fans will pay.

When it comes to programming, I’ve seen examples using both of the extremes. You
have the outsource shop that puts a ton of programmers in a room. They measure the
contracts they get, the lines of code they deploy, and the number of projects
completed. It doesn’t matter if the solution is good or elegant. It only matters if the
solution solves the problem. And, if you can get more solutions finished faster, that’s
more measurable product and more success. The manufacturing business of
programming is really easy to understand because we have a handle on the
manufacturing business of goods.

Then, far too often I see the artist mentality perpetrated into programming. As almost a
knee-jerk reaction from the manufacturing view of programming, managers jump to the
extreme opposite side. Or, at least they’re being convinced by the programmer. (Drat!
You’ve been caught!) The programmer knows what he does is an art. It’s done when it’s
done. I don’t need to do any estimates. I can’t tell you if it’s going to work right. I need
to refactor and make this better. The solution must be the most elegant and beautiful
solution ever. The diva artist mentality of programming is live and well!

But a great programmer is somewhere in between these two extremes, like a
rockstar. (Oh no - that doesn’t mean I like all the job ads that say “rockstar programmer
needed” - if I never hear that term again, I would be one of the happiest people in the
universe.) There is an art that is programming. It’s not just as simple as making a
widget in the same way over and over. Some of the problems sound like the same
thing, but the solution is always affected by many other dependencies. But, the point
is, the solutions are art. This can’t be measured as simply as one might expect.

But, in the same way, the programmer can get to a point where they can produce the
same product (or close to it) in a consistent manner. It just takes work. It takes practice,
but it can be done. It’s a combination of artistry in a set of code or a library used
repeatedly in new projects.

When managing programmers, it’s important to think of the rockstar mentality. No, I
don’t mean give them extreme riders, but give them everything they ask for, within
reason. Let the art flow. You will notice how protective and proud they get of the art
they create. And, then, it shifts into the concert stage. Once that art is created, let them
duplicate it over and over. Just don’t forget, the next album is set to release next
year. (Or in programmer terms, after some time, you’ll need to refactor.) When you
realize how to keep programmers out of the manufacturing management plan, but keep
them scheduled on something that can be duplicated, then you’ll really have those rock
star programmers.

#29. Sometimes, Just Ask Why

ALL MOMMIES AND DADDIES ARE PROBABLY CRINGING
NOW, THOUGH

What happened to “why?” What happened to make people so afraid of asking this
question? Perhaps it’s when all of the kids start asking “why” about everything. Why
does daddy have to go to work? Why do we need money? Why do we need to buy
food?

Or perhaps it’s been the poorly trained hoard of bosses and superiors who have asked
the question “why” which somehow was almost drowned out by their arrogant
incompetence. When the purposely ignorant ask “why” it can be quite annoying.

It might even be the menacing “why” asked by the scary vice president at your
company. You know, the question is phrased as an innocent request for information but
which is dripping with malice and anger. “When you hear ‘why’ from the VP, you best
run!”

But, “why” doesn’t have to be so bad. I think the greatest inventors asked “why.” So
many “why” questions have lead to so many awesome discoveries. There is a very
good side to this question.

I think “why” should be asked more often. But it requires the right framing. When used
correctly, “why” can be one of the most important questions you can ask programmers
on your team.

Before I get into further detail about how “why?” can help, I need to make something
incredibly clear. When you ask a programmer “why,” you are not being disrespectful.
You are trying to learn. So, don’t act like they did something wrong. This destroys the

confidence in your desire to learn and can turn programmers defensive. Once you can
completely grasp the fact that this is not meant to be a ‘check-up’ on the programmer,
you can start to communicate this to them as well. When you ask “why?” you’re not
meaning to say that you disrespect the decision that the programmer made.

I’ve heard managers say that if they knew how to do all the programming, then why
would they need the programmers. When you ask “why,” we’re not talking about
knowing every detail about the actual code. As a manager, you should have an intimate
knowledge of the decisions that are made and the solutions that are applied. You may
not have a complete understanding of the technology or its implementation, but you
need to understand why it was implemented. That returns us to the core question and
point here. You are asking “why” because it is your job to understand why. You don’t
necessarily need to know how.

You are simply trying to get a better, broad understanding. This will help you make
better decisions as well. You are learning from the programmer, not questioning their
skill or integrity.

When you ask the programmer “why,” you get two benefits: the chance to make the
programmer (and quite possibly yourself) think through the task thoroughly and the
ability to provide feedback.

When you ask someone “why,” a unique thing happens in the brain. Instead of having
this vague reason floating around in the brain, it has to be solidified and put into
spoken word. This is something in itself. There are times when we make decisions
without thinking about it. I bet in the last few seconds, you adjusted your arm, perhaps
supported your head. You made the decision to move your arm to do this. Why? Was
your head too tired? What if that cost you five cents every time you made a move with
your arm. Would you think through each movement then?

The point is, when you ask the question, you get the person to put the time into
describing and owning the decision. As a consequence to your question, the
programmer must now own all decisions they’ve made and actions they’ve done.

There is no simple “just because” anymore. (“Just because” causes business to lose
tons and tons of money a year. Don’t believe me? Take a whole day and write down all
the tasks you do. Then, ask yourself why. For fun, count the number of times you
answer “I just always do it that way” or “just because.”)

In addition to getting to hear the programmer’s rationale behind their decisions, you get
to rehash the project in your mind as well. You might hear some crazy reasons from the
programmer for what they’re doing. But, perhaps that’s because what you asked for is
a little bit “crazy.” Or a more accurate example, if the programmer is giving you some
really wild reasons, perhaps this can demonstrate that the benefit of the project
compared to the work involved doesn’t add up.

Asking “why” is an organic opening for feedback. Sometimes it can be hard to find the
time to remind your staff that they’re doing a good job. And, let’s face it, sometimes it’s
easier to ignore a problem if you can just shut your office door and not have to work
with them directly. This “why” time allows you to give them both positive and negative
feedback.

Try it. Just a few times. You’ll see what I mean.

When you hear something that seems like it was a great idea, say so! Other times,
when listening to a complex explanation, take the time to mentor and tutor the
programmer along. Perhaps their solution is complex and doesn’t necessarily take into
account the day-to-day business concerns. Take this time to teach them a bit more
about the business, the part that you dwell in, so they can make better decisions in the
long run. Of course, if they’re mistaken, this is the perfect time to point it out and help
develop and discover the correct solution.

But there’s one more important thing you must do when asking the question of “why.”

Don’t interrupt. Ever. Resist the urge. Don’t do it. Wait. Just wait. You’ll have your turn.

When you first start out asking the “why” questions, it might already be stressful. But
remember, nothing turns up the heat and ignites a defense more than interrupting the
conversation. Let the programmer finish. Even if you know, or think you know how the
story is going to end, wait, and let it end. Allow them to finish their thought. Make sure
you can determine the difference between someone taking a pause for a breath,
waiting for their thoughts to form, or just being nervous. Listen, listen, listen. (I’m sure
there are whole chapters or books in the management arena about the importance of
listening. Do it!)

Don’t interrupt during the answers to your “why” questions. This just causes stress,
makes things tense, and kind of demonstrates your lack of respect for the programmer.
Remember, by asking “why,” the investment the programmer is putting into an answer
is actually really doing you a favor. They know the solution and are responsible for the
end product. By the strictest sense, you don’t need to know the reasons for everything.
But it sure helps you become a better boss and manage projects more effectively.
Don’t interrupt.

When executed properly, “why” can be one of your most valuable questions. Show
your programmers you care about their thoughts and decision process by asking about
it. Take the time to give feedback and show respect. Ask “why” with a smile - and
mean it. Something as simple as that will make you more informed and make you a
better manager.

#30. Great Programmers Don’t

Always Know It

OR, HOW AND WHY I ALMOST RUINED MY LIFE

I don’t remember anything from when I was in elementary school. I’m pretty certain
classes were going on. I didn’t pay attention. For whatever reason, I could read well.
When other kids were struggling reading out loud to the group, I was always the kid
staring at the ceiling, and then whispering the word they were stuck on so we could
continue. I read the entire book right away, and then just daydreamed and really
examined that ceiling. I also built lots of little army boats out of my pencil case, pencils,
and erasers.

In middle school, I did basically the exact same thing. But, I also got a little bit more
enterprising. And by enterprising, I mean business not like your corner store but more
like the mob. Middle school was the beginning of new lockers with combinations. For
some reason, a lot of my classmates could not open their new combination lockers. To
me, it was super easy. They’d ask me to come and do it for them, giving me the
combination for their locker. I would help them, walk away, and write down the locker
position and the combination. (See, our school said they changed the locker
combinations each year. Instead, they just changed the numbers on the lockers. I
figured out this money-saving scheme.) Later on in the year, I was promoted to hall
monitor during study hall. When I got really bored, I’d grab some of those locker
combinations and open up some random student’s locker. This was the beginning of
my weight problem, too. Perhaps it wasn’t helped by my ability to take twinkies and
other cakes from the kid’s bag lunch inside their newly pilfered locker. (In hindsight, I
know some of the kids packed their own lunch. I wonder what they thought when they
remember packing their lunch with a Hostess treat, and then at lunch it was gone.)

As time went on, I became an even worse kid. I started stealing CDs from lockers.
Don’t worry, I was finally caught, suspended, and had to do some restitution. But not
before I tried every method of getting out of trouble, including putting the stolen CDs
into another kid’s locker to hide my crime.

In high school, I got really bored. I started doing drugs, running away from home, and
basically causing all kinds of chaos. On a field trip, I circumvented the long line from
our bus at Burger King by walking across the street to go to Taco Bell. That got me
suspended as well. If you met me in my sophomore year, I think you would agree that I
was a bad kid going down a horrible road.

But I wasn’t. I think I gave away the real problem in the descriptions of my capers. I
wasn’t bad, I was bored. I had no way to channel my energy. In fact, I was probably
actually really smart. Because I wasn’t challenged, I turned into a very negative version
of myself.

This same thing happens with some great programmers. But, it just manifests in a very
different way. And there is one core reason for this.

Sometimes great programmers don’t know they are great.

It’s that simple. Or, they are never recognized as great. So, they act out. They may not
really even know they’re “acting out.” But there are two ways that they turn bad. These
are random tasks and negative reports.

Sometimes really great programmers will run off and do some task that is completely
devoid of any resemblance to the project they’re working on. If they are supposed to
be making a website for an insurance company, they might also create the game of
pacman in javascript. This clearly is not a requirement for this website!

The first reaction you might have as a manager is anger. How dare they defy you? Or,
even worse, how dare they steal from the company! They could be finishing this project

and moving on to the next one. Instead, they wasted billable, paid time making a
useless game. What a bad programmer!

Rarely that’s true. Only in very unusual cases is he or she a bad programmer and a bad
person. Your programmer is just better than you realize. They are not being challenged.
So, they have to do something that challenges them. (Because I didn’t feel challenged
in high school, I regularly got high to introduce the challenge of keeping a straight face
and not attracting attention to my reckless, stupid, illegal activity.) The worst part of this
scenario is that the programmer may not be self aware of the reasons why they did
what they did. They might just say “I’m bored” if you ask them. But, that’s a clue. Don’t
let it slip away.

The truth is that this programmer is better than he knows and you recognize. And,
because they’re better, you’re not challenging them enough. So, they’re acting out.
Instead of punishing the programmer next time something like this happens, try to find
out the root cause of this behavior. Find out if they were really truly being disobedient
or if it was an absentminded task outside of the project scope without much thought.
Chances are, they’re not bad. They are actually really, really good. Your job is to find
ways to harness this, keep them on track, and challenge them.

The other way that really good programmers manifest is through negative reports about
everyone and everything. Initially, they might actually have an idea that they’re good at
their job. However, society makes it so abundantly clear that anyone who
acknowledges their own greatness is conceited. “Be modest.” “Don’t tell anyone
you’re great. That would be bad.” Before you know it, the programmer has allowed
everyone else to beat them down and they become negative. Look at how awesome
they are, but they can’t tell anyone. Look at all the poor quality people who get
promoted instead of them.

In other cases, negativity might come from the programmer never realizing that they’re
great. They might not understand what true level they’re at. If they’re at a high level, but
everyone else is at an acceptable level in your team, this might be ok with you. But,

from that programmer’s vantage point, he is at an acceptable level, and everyone else
is below them, at a poor level.

Bring on the negativity.

You can recognize this phenomenon by listening intently to the reports the programmer
gives you. Pick out any times where they brag about their own work (or toot their own
horn, if you will). If your programmer is suffering from public negativity from internal
greatness, you’ll hear none of the self-worth statements and prideful
acknowledgements. Listening intently at this step is important. The lack of self-
promotion is what separates the great programmers from the truly negative,
dispassionate people that you might have to cull from your team. Listen for self-
aggrandizing. If there is none, continue with the troubleshooting! Otherwise, thin the
herd.

Next, listen for particular negative reports about fellow teammates or projects. When
talking about other programmers, look for phrases that sound like “is not good
enough,” “is too slow,” or “misses things a lot.” You might have to get clarification as
to what specific scenarios the programmer is referring to. But, this can be another sign
that the programmer doesn’t realize how good he really is. He looks at all the less
talented programmers and reports them as inferior. Your job as a manager is to be able
to determine the difference between a real report of useless programmers and a
misguided comparison to the programmer’s own skills. If you can’t, you might actually
believe that your team of good programmers is useless. If you get rid of them, you’ll
have just one great programmer. He or she will burn out. Oh, and when you’re hiring
replacements you might actually get the real low tier of programmers to replace your
previously acceptable level.

I like to think about some of the cars I had growing up and use them to illustrate my
point. I had a 1978 Chevy Impala. It had a large engine but it was a tank. It took a little
while to get up to highway speeds. Nothing too insane, but you could tell it was
working on it. Later on, I got a 2001 Monte Carlo. This car kicked butt. I could clearly
say the acceleration was much better than the Impala. Now, I have a 2009 WRX STI. It

has a 0–60 of 4.7 seconds. This really kills the Monte Carlo. The Monte Carlo was slow
in comparison (7.5 seconds). If someone asked me what I’d rather have, I’d like to have
my STI, not that slow Monte Carlo. But, if you remember, the Monte Carlo totally
kicked butt compared to the 13.6 second 0–60 time of the Impala. However, if you
could only choose between the Impala or Monte Carlo, you’d pick the latter every time.
It’s all about your frame of reference and comparison. Your team might be full of Monte
Carlo cars. One of the cars is the STI, though. Don’t let the fact that you have a fast car
make you get rid of the other ones. You never know, when that STI finally is retired, you
might end up with a replacement Impala!

Sometimes really good programmers just don’t realize it. Watch them and recognize
that perceived disobedience or consistently negative reports are signs of this condition.
If you determine that the programmer is better than you or they realize, the fix is
simple. Challenge them more. Also, don’t back down from telling them what’s going on
and describing what they’re doing. Confront them on the negativity. Explain that
they’ve worked hard and are a great addition to the team. Teach them to understand
every programmer is on their own journey. Help them attain a leadership position in the
team perhaps. Or, find ways to give them the most challenging parts of the projects.
Any of these steps will help you. Just don’t ignore the great programmer and think
they’re just acting out.

#31. Always Be Perfect

IN OUR INDUSTRY, THERE IS NO AIRBRUSH

Throughout my career, I’ve had some pretty great bosses. Sadly, I’ve also had some
poor ones. In either case, I still remember looking up to them. These were the men and
women who made the choices that affected my work life. They had great power. They
had my respect.

And then, they each invariably made a mistake. I was appalled. How could my
manager have made such a huge oversight? Or an even worse reaction: “why is my
boss being so dumb?” I wanted them to be perfect. I needed them to be perfect. Who
wants to be lead by someone who make mistakes just like you do?

This feeling is something you need to remember when you become a manager. You’re
no longer the programmer who can have bugs and forget things. You’re expected to be
above this. You’re expected to be perfect. Your team will now expect that you’re
impossibly perfect. Keep this in mind when you make your decisions.

Now is the time to turn on spell-check. A manager can’t have spelling mistakes in his
email. Don’t you dare jumble the letters of an acronym.

Now is the time to look up words you use but you aren’t completely certain of their
meanings. Don’t fully know what the acronym SaaS means? Look it up before you use
it again. Do you have a habit of using the word “indubitably” but don’t know what it
means? You just think it sounds cool? Time to look it up.

Now is the time to read the books on personality style and management training. That
split second after you became a manager, you’re now expected to know all of these
things. Of course this is impossible, but that doesn’t mean you shouldn’t try. It’s now

your new set of responsibilities. Take the time to educate yourself on people and
processes.

We all know that we can never be perfect but we need to keep this unreachable
expectation in mind. Make all decisions and choices as if your whole world on display.
Your team definitely is watching your every move now.

Having a team that expects you to be perfect isn’t such a bad thing. This accountability
can be leveraged into a good thing. Acknowledge that you’re not perfect, but share
that it is your goal to be the highest quality and caliber that you can be. Remember,
your team is counting on you to reach these heights, so use that to motivate yourself.
You’d be surprised, when no one expects someone to be good, it is easy to be subpar.
When others are expecting, encouraging, and challenging you, even us normal folks
develop insatiable desires to reach greatness. We have a support system now. We
have people rooting for us. Being great isn’t something that is reserved for those crazy
people with the insane internal drive anymore. You can do it now, too.

When you become the manager, you are expected to be perfect. You never will be.
Acknowledge this. But, take every care to reach a higher level, learn more, and become
more accurate. People are watching you. Be an example of what you’d expect of your
manager, and what you’d like your team to emulate.

#32. How to Deal With the Idiots

Upstairs

THE BIGGER THE DINOSAUR, THE SMALLER THE BRAIN?

I struggled with where to put this topic. I didn’t know if it made more sense to include
in the manager section or the programmer section. In the end, I decided it belonged
here. A manager’s reaction to a challenge situation can have a deep, rippling effect on
the team. I think it’s more important to address your reaction as a manager, but this
concept really applies for any position on the team.

Sometimes, a completely insane requirement comes across your desk. It may be for a
new programming project or a fresh HR initiative. I’ve had many of these questionable
requests. (Oops, I just switched back into manager speak. I meant insane
requests.) You stare at it and just get incredibly confused. What is the point of this? Or
even worse, I think this is going to hurt the company!

The first thing to do is to make your case. Don’t sit back and let things flow downhill.
Remember, you were there once. Don’t make the same mistake that some employees
do. As a manager, remember the company is a conglomeration of all of the work and
decisions each employee of the company does. If you think it doesn’t affect you, you’re
wrong. You are just as responsible for any decision as anyone else in the company. You
should always be trying your best to make sure the company succeeds. Sometimes,
that means taking a stand against silly or dangerous projects.

Put together your thoughts and make your case. If you can sleep on it, do that. Try to
remove the emotion. Assemble a counterpoint and proposal that includes the following
parts:

First, demonstrate that you understand the requirement. Explain that you understand
each point. If you can’t do this, you shouldn’t be disagreeing anyway! You could be
missing something that makes your total argument a waste of time or invalid.

Second, suggest or predict what the negative ramifications could be of this project.
Depending on your communication style, don’t forget to prioritize these in order of
impact. Mixing minimal impact and epicly dangerous, high impact topics with one
another causes each topic to blend together. Instead, start with the worst case or the
best case (glass half full vs half empty?) and work your way to the other side of the
spectrum. Remember to keep your predictions based on actual experience and fact,
not on your feelings. Speaking of feelings, repeatedly take time to review your work so
far to make sure you’re not communicating with any emotional statements.

Finally, give suggestions. You must come up with some alternatives otherwise you’re
just one of the many complainers that fill up cubicles each day. You know the type.
Don’t be like the annoying ones that come to you complaining about a situation but
don’t have a solution or suggestion to alleviate the problem. You’re just supposed to
know. Do yourself the favor of not passing this inconsiderate method of
communication upward.

Once you have a chance to communicate your case, you have two outcomes. Either
the submitter will apply your changes and move the project forward, or you’ll lose. If
you’re lucky enough to get a new proposal implementing all of your changes, great!
Move forward and get it done. But, do not brag about it. Don’t tell your team about the
horrible proposal that was submitted. Resist the urge to tell them about how you saved
their asses. Instead, bring the proposal forward like any other. This is a project that
we’ve been given, let’s do it. The difference here to recognize is while you’re a team
player, fighting for your staff, you are not peers. You shouldn’t share with them these
wins. The people who need to know (your boss), already know. If you really need to
share this, find a friend. Don’t share with your employees like this. All this does is make
you sound like a blowhard and diminish the respect and authority of those above you.
That’s not your job.

The other outcome is that you might lose. You might lose hard. That’s ok. Just eat it.
Don’t complain. Don’t go and grumble to your team about how bad the proposal is or
how you fought all these points. The more you complain to others, the less professional
you look.

Your job is to be a representative of the company and its decision makers. Take this
seriously. If you complain downward, you’re only bringing yourself to a lower level,
removing any shred of respect.

If you really must answer questions from your team about the project, be polite in the
way you handle it. I’m not suggesting you lie, just frame the response in a way that may
not add your personal support to the proposal, but backs it with your position. “This
isn’t necessarily the way I’d personally do this, however, I think we can make this
work.” “The decision has been made to do this set of tasks. I think if we put our best
foot forward, we’ll still be successful. If it turns out bad, we can use this as an
experience to help teach others why they might want to do it a different way.” It’s all
about framing it the proper way.

One last little note about complaining and sharing. One of the best tips I’ve ever heard
was one sentence: “Share downward, complain upward.” The point of this is simple.
When you have information (that you can share), share it with those on your team. Give
them more information, it empowers them. It allows them to make decisions. However,
when you have complaints, complain upward. Find your boss, shut the door, and make
your case. Do not go to your peers or to your team and complain. While it may make
you feel better in the very short term, that’s not the path to being a successful manager.

#33. Get QA Involved Sooner

UNLESS YOU LIKE BROKEN SOFTWARE, THAT IS

If you have a QA member or team in your programming group, you’re lucky. I know you
may initially find that hard to believe. Doesn’t all the drama seem to come out of the
programmer / QA relationship? At least in a few teams I’ve been on, this sadly has
been the case. It’s too bad, too. They’re great members of the team. They’re needed.

And, if you don’t have a QA team, let me just take a quick second to tell you to get one!
If you can’t afford one in your budget, then take one of your programmers from a
different project and have them act as QA temporarily. Of course, make sure to rotate
this for each project so that one programmer doesn’t have to do QA all of the time.
Using another programmer for QA is the least-worst “best” case compared to not
having QA at all.

I could ramble on about the importance of QA forever. Let’s move forward with the
assumption that you now have QA staff available. Now, lets correct the next mistake
that I’ve seen over and over. It’s time to stop putting QA at the end of the programming
schedule.

Programmers will insist, kicking and screaming, that projects can’t be tested until they
have completely built the application. Sorry, but this is wrong. This objection happens
for one of two reasons. First, it could be that the programmer hasn’t been disciplined to
program features in a linear fashion. They may complete portions, get bored, and move
on to another feature. This leaves most of the project completely broken until the last
few minutes when everything comes together. How in the world could anyone test
that?

The other reason for this objection is because the programmer can’t figure out or
imagine how someone could or would want to test a project that wasn’t completely

finished. They might question when the newly created user authentication system
should be tested. Should testing wait until the project is complete? What if he chooses
to refactor something and break the user authentication. Won’t that make that whole
testing scenario invalid? Don’t let this stop you from getting QA in earlier. Remember,
this is just the programmer not understanding the concepts of QA. That’s fine, as much
as programmers would like to think it, we can’t be masters of everything.

The answers to these concerns and questions could take up a whole testing book so I
won’t be diving into them now. That’s a topic for a testing based book. But suffice to
say, with proper training and information, the arguments against getting QA sooner are
void.

Since we’ve squashed these two arguments, there is no other reason to put QA at the
end of the programming task. QA should be involved sooner. QA should be involved
immediately.

When the project charter or definition has been finished, you would generally involve
your programmers. Now, also involve QA. While the programmers are reviewing,
estimating, and creating a task list, the QA resource will be doing the same thing.
Instead of figuring out what classes to program and what languages are required to
complete the task, QA will be working on developing use cases for the business as well
as identifying potential areas to test/target for bugs. They should probably create their
own test plan.

Now, as soon as any feature is even remotely available to test, assign QA. QA should
run through the wireframes as soon as possible or test the first draft of written code if
no wireframes are available. Some teams function by a paradigm that requires the
programmer to envision the solution for every request. Whatever the programmer
thinks of is what will make up the final product. QA should just be plugged in to
validate that the solution the programmer made doesn’t have any major bugs
compared to his interpretation of the solution.

But, that’s not the right approach. Instead, involve QA right away to validate that the
programmer is making assumptions and creating things that make sense when
compared to the documentation and project request. As individual features come out,
QA tests them. This allows them to catch the bugs sooner and to perhaps deter a
scenario where the rest of the application is built on a faulty assumption.

Architecting your testing in this manner may require a test cases to be ran repeatedly at
different parts of the project. If there is a large refactor, tests should be ran again. But,
this is ok. The more testing, the better the product will be. Remember, the QA tester
position is different than a programmer. The idea of repetition destroys a programmer’s
world. A good QA resource understands the importance of their testing and
comprehends that repetition is just part of the task they need to do. (Hopefully QA has
some automation tools at their disposal, though!)

In the beginning of this chapter, I mentioned my experiences with drama between
programmers and QA staff. This really happens. Think about it. As a programmer, you
just put your heart and soul into some code. QA comes by and says “nope, doesn’t
work” and sends it back. How dare they not understand and appreciate the work
you’ve put in. You were even up late last night programming the feature they just
rejected. At least acknowledge that most of it works! Or that it looks cool! Don’t be so
cold or callous. (Ok, so maybe you’re starting to see some of my diva programmer
sneak out, but people do think like this!) This piece of art (if you will) isn’t up to par
according to QA. This can cause anger and anxiety.

It’s even worse if you measure your programmer and QA performance on bugs created
and bugs reported. You’ve immediately put them head-to-head in a battle to protect
themselves and build their reputation, not to create better software.

Now, let’s flip it around. Imagine this scenario: as a QA person, you test the signup
process. You find three bugs and they’re fixed. Next, you move on to the forgot
password section. You find one bug and that gets fixed. You are told that some of the
code has been refactored, so you have to go back and test signup again. Ok,
understood, so you go back and test again just to be sure. The same three bugs exist

again! Oh, and now there’s a fourth one. What is wrong with the programmers? Don’t
they get it? Don’t they use their software? You already reported these bugs, so why did
their new programming allow these regressions? This type of scenario can be the
cause of some of the ill will between the two teams too.

Once again, I restate the solution to all of these problems. Bringing everyone together
sooner. Keep the communication open. Don’t just put QA at the end making it a battle
royale before the software is released.

One interesting phenomenon I’ve noticed with some QA resources is the ownership
they develop of the software increases dramatically the sooner they get involved. This
is always a good thing. The more people who feel ownership in the project, the better
the outcome of this project and the higher quality product released. I’ve personally
seen QA resources defend the programmers and talk great about the product even in
the face of a large bug report. Why? Because those QA people were brought in sooner,
as project members, not towards the end as custodians.

Want success with your QA team? Bring them in sooner. Make them get involved as
soon as the programmers do. Keep lines of communication open. You’ll see greater
ownership in the project and less animosity between the teams and those with
potentially opposite responsibilities.

Endnotes

Thanks so much for reading this book. I’m truly honored to have shared these 33
things with you. As I hope you can tell, I’m very passionate about making sure that
everyone in our industry can enjoy a level of success greater than they have already. If
you have any questions, please do not hesitate to reach out to me at aaronsaray.com. I
wish you the best while you travel along your path to becoming a great programmer or
manager.

Special Thanks and
Acknowledgements

Equally important are both friends and work colleagues for each provided the insight,
the motivation and the encouragement to complete this book.

I thank my friends for the encouragement, insight, and sometimes the competition that
they fostered in me. Thank you Crystal Cichon, Eric Lightbody, Frank Cichon, Mark
Skowron, Joel Clermont, and Jeremy Dee.

I thank my work colleagues both past and present, who provided insight whether they
knew it or not. Thank you David Lundgren, Mark Hillebert, Jenny Bennett, David
Hoover, Keith Alberts, Clare Zajicek, Chad Stovern, Heather Dorsey, Jake Ewerdt, Billy
Gilbert, James Rodenkirch, Brandon Danielson, and Andy Karnopp.

Finally, I thank the managers, bosses, and owners who I’ve interacted with. Some
demonstrated great examples of leadership while others showed me the need to
develop my skills further to be successful. Thank you Jared Alfson, Jason Keup, Mark
Neumann, and Joe Luedtke.

	Table of Contents
	Introduction
	Programmers
	#1. Learn From Everything
	#2. Log Everything
	#3. Programmers are Customer Service
	#4. Real Talent is Making Things Simple
	#5. Have Pride in Your Work
	#6. Solve the Right Problem
	#7. Design for Your Users
	#8. When In Trouble, Break Up
	#9. Just Write More Code
	#10. Don’t Underestimate Analogies
	#11. Give Proper Visual Cues
	#12. Find Someone Smarter
	#13. Sometimes, Just Be Great
	#14. Catch Your Breath
	#15. Test Everything
	#16. Seek Out Feedback From Peers
	#17. Disagree In the Form of a Question
	#18. Guarantee Long-Term Quality Using Two Development Paths
	#19. Social Capital Is Just as Important As Skill
	#20. Step Up to Be A Senior Programmer
	#21. Write Out Your Goals
	#22. What to Look For In Code Review
	#23. Do Something Different
	Managers
	#24. Make Face to Face Work
	#25. Learn to Do What They Do
	#26. If You are Seducing a Developer, Follow-Through Is Key
	#27. Motivation Isn’t Always About Money
	#28. Programmers Are Like Rockstars
	#29. Sometimes, Just Ask Why
	#30. Great Programmers Don’t Always Know It
	#31. Always Be Perfect
	#32. How to Deal With the Idiots Upstairs
	#33. Get QA Involved Sooner
	Endnotes
	Special Thanks and Acknowledgements

