
Enterprise PHP
Architecture through
Design Patterns and

Modularization

by Aaron Saray

Why trust this guy?

● Programming for
over 2 decades

● Web Development
Manager

● Author of WROX
Professional PHP
Design Patterns

● MKEPUG CoFounder

Why are we here?

● Focus on Enterprise Development

● Understand decoupling

● See real reasons for doing things to pattern

Why is this important?

● PHP is everywhere

● PHP runs organizations

● IT changes faster than any other area

● Long term investment
○ Do things the right way, and be valuable - longer

■ quality
■ speed
■ maintainability

Lets get into it

Disclaimer:

● There are many ways to refer to the
concepts discussed next

● Don't get stuck on names
○ Get stuck on the ideas

What are the main topics?

● Data Models

● Domain Logic Models

● Mappers

● Services

Data Model

● This class represents a real entity in the
organization

● Examples of entities:
○ Visitor of the website
○ Product for sale: computer
○ Mail message
○ Blog entry, Comment

Data Model (con't)

● Data models contain properties that are
unique/descriptive to that entity
○ Harddrive for sale: has property of:

■ size
■ suggested sale price
■ speed

○ Does not have property of:
■ favorite song

● Data models contain methods that
understand their properties
○ User has methods:

■ fullname() - brings together properties

Data Model (con't)

● Very dumb

● Harddrive example:
○ has a property called suggested sale price
○ has a property called sold price

○ What happens if the sold price is less than the
suggested sale price?

■ This model does not care. It's a dumb data store

Sneak peek: Domain Logic Model

● Validation of the sale price would be done in
the domain model

● What about string length?
○ Understand that your limits should be on your

domain product
■ Is it true that your limit for a product is 255 chars

- just cuz its a varchar(255) column?
● Your data provider should handle your requirements, not the

other way around

To Summarize Data Model

● Represents some sort of entity

● Has properties of that entity

● Has methods that understand its own
properties only

● Dumb

● Could be really messed up if it doesn't have
a relationship with a Domain Object

Domain Logic Model

● Represents the logical steps and decisions
that make your app (business) unique

● Handles simple data validation

● Handles complex business rules

● The gatekeeper of the Data Model

Domain Logic Model (con't)

● Has relationships with Data Models
○ Can be 1-1, 1-N, N-1, N-N, depending on your

choices and architecture. Probably is a hybrid

● Has methods that comprehend and
understand Data Models

● Has properties or constants from the
business configuration
○ Maximum amount of discount on sale

Domain Logic Model (con't)

● Going back to harddrive example
○ Harddrive data object has suggested price of $40
○ Input has the sale price coming in at $30
○ Domain Logic Model to the rescue!

● Data Logic Model validates the sale
○ Property says maximum discount is 20%
○ Input discount is 25%
○ Rejects input, does not allow Data Model to accept

$30 as the sale price

○ Perhaps maximum discount is 0% & must be exact
○ Rejects input if input is not exactly $40

Domain Logic Model (con't)

● Another example
○ Blog Entry Model has a title

○ Business says Blog entry titles should not be longer
than 100 characters

○ Domain Logic Model will validate that the input ready
for this Blog Entry model is <= 100

Why is the separation important?

● Two reasons
○ Reuse

■ 100 different items for sale, but they don't have a
common ancestor (ie, you can't extend a class.
In this example, we choose not to use traits)

■ Each one must sell for the exact sale price

■ Only ONE object is required to validate that each
time - instead of duplicating that code in each
model

■ ** Design patterns - there are more options than
just extending forever!!

Why is the separation important? (con't)

● Two reasons
○ Data models should just represent an entity, not the

logic behind it
■ Your car has a maximum load. The steel doesn't

know that

■ Harddrive example!
● Harddrive is for sale at main warehouse. It is the same

harddrive for 10 resellers.
● Each reseller has different properties that determine the final

sale price
● The harddrive ITSELF never changes - so that class should

be exactly the same for all retailers

Summarize Domain Logic Models

● Understands the business logic

● Comprehends data models

● The Gatekeeper of valid data

Data Mapper Object

● Data mappers map data from a Data Access
Object to Data Models

● Data Access Object
○ not covered too much in this talk
○ provides access to a data source like a database,

salesforce, as400, REST, via a predictable interface

● Concerned with retrieving or persisting a
single Data Model (or collection)

Data Mapper Object (con't)

● Not particularly smart
○ will work to retrieve data based on parameters
○ will populate a Data Model generally without

validation
■ ** caveat: sometimes a hybrid is created when

working with remote sources to introduce Domain
Logic Models here... but that's another talk

● Works directly with the Data Model
○ Creates new instances
○ Understands properties
○ Determines what to persist

Data Mapper Object (con't)

● Harddrive example
○ Can take a Harddrive Data Model and save it in the

proper format to MySQL
■ Remember, the object has the data, but perhaps

the database is normalized

○ Has a method to find a harddrive by serial number
■ Internally, determines what db field is the serial

number, runs the query, and then populates the
model with the full properties

○ Build collection
■ findAll() - parameter where size is > 250gb

Why is Data Mapper Important?

● Data Models are dumb
○ Don't care what their data is or where it came from

● Domain Logic Models only care about
decisions
○ They don't care about the source

● Something needs to retrieve and persist

● Data Mapper is still not your "public"
interface
○ (that's a service) - can swap out Data Mappers

Summarize Data Mapper Model

● Works directly with Data Model and Data
Access Objects

● Retrieves and Persists Data Models

● Understands properties of Data Models
○ Can map data source to properties
○ Can determine retrieval method based on properties

Services

● A lot of confusion with this term
○ Sometimes they're the public interface of your app
○ Other times they reflect connections to third parties,

like Amazon or Salesforce
○ Doesn't matter - let's just move to the concept

● Services are the public face to your
controllers
○ These classes allow for calling methods that create,

persist, modify, and retrieve data
○ Used to translate and process information from user

input or other helper classes

Services (con't)

● Services are responsible for providing the
Data Model or collection to the consumer

● Services act as the layer to work with your
external consumer or framework

● Services do processing that is the same no
matter what Data Model, Data Mapper, or
other Service is involved
○ retrieving data from a helper model, filtering search

term and city/state, etc.

Services (con't)

● Harddrive example!
○ Service::save() would accept a harddrive model,

grab the proper mapper (perhaps the harddrive
mapper associated with mysql), and introduce those
two. It would then reintroduce the saved model

○ Service::findBySerialNumber() would accept a serial
number parameter, translate that into a parameter
for the mapper, get the mapper, retrieve the
collection, and pass that back to the consumer

Services (con't)

● Harddrive example (con't)
○ Service::validateUpdate() - would take user input in,

validate that it is valid and could match up with the
Data Model, and return whether the input was
acceptable or not

○ Service::populateModel() - takes that validated user
input and the model, calls the mapper with this
information to populate it (mapper knows fields, not
services), and returns it

Why are Services Important?

● Services are the public interfaces to the rest
of the classes in your app

● Things that you allow 'the consumer' to do
are only defined in the service layer

● If data sources, mappers, models change,
your service stays the same, and so does
the consumer side of your app

Summarize Services

● Public interface to the rest of your code

● Understand Data Models, Domain Models,
Mappers

● Execute processing that is always the same,
never differs no matter what objects are in
use

Example Code

● Let's see this in action. Things to remember:

● This is not a whole app - don't treat it as one

● It is example code

● This is not a whole app

● Don't forget, this is not a completed app

Just trying to demonstrate the concepts
with the least amount of distraction!

Layout - Overview
Main layout of files

We will cover each
code section

Retrieval Options (A Controller)

Retrieve one by ID

Other retrieval code

The Mapper

The Mapper (con't)

More Mapper

Mapper (populating / mapping)

Data Model

Next Up...

Retrieval is done...

Let's look at persistence

Persistence Controller (1 of 2)

Persistence Controller (2 of 2)

Creating a User

Creating User (con't)

Domain User Model

Mapper DB - Save

Apply Update From User

Persistence Done

Yay

Now - let's introduce the value!

Users must be sync'd to AS400

● Previously was from mysql db

● Need to change as little code as possible

● The only thing changing is how we map data
○ to / from the data source
○ "map"... mapper

● Lets substitute in a different mapper

Modify User Service

This is the ONLY change to your code.

All else is NEW code.

What does this mapper look like?

AS400 Mapper Continued

AS400 Mapper Continued

AS400 Mapper Continued

Whew! Done!

Check it out at

http://aaronsaray.com/midwestphp

Tweet at @aaronsaray

