
Zend Filter: A Secure Man's
Best Friend
by Aaron Saray

Why Trust This Guy?

● Programmer for nearly 2 decades
(can you say Commodore 64?)

● Web Developer for 11 / PHP for a
decade

● "Professional PHP Design Patterns"
- Wrox Publishing

● Milwaukee PHP Users Group /
MWDM

● Cuz I said so

What is a Secure Man?

A secure man can admit to owning this:

Real Security

Filtering data!!

● User Input
● System Output
● Server Requests

The Point: Filter out "Bad" things

But what is bad?

● Bad is complex
● Bad is unexpected
● Bad is malicious
● Bad is "the old version"
● Bad is placeholders
● Bad isn't always bad

Why Filter?

● Filter anything that would adversely effect
○ security

■ xss
○ performance
○ business logic

■ dashes instead of dots
● Design Patterns:

○ filter is like decorate

What Does PHP Provide?

The Filter extensions (enabled by default since PHP 5.2.0)

Two filter types:
● Validate filters (referred to as Validators in ZF)
● Sanitize filters (removes unwanted data, Filters in ZF)

Some Useful/Notable Standard Filters

● FILTER_VALIDATE_EMAIL
○ duh

● FILTER_VALIDATE_IP
○ has flags for IPv4, IPv6, private/reserved ranges

● FILTER_VALIDATE_URL
○ according to RFC2396

● FILTER_SANITIZE_MAGIC_QUOTES
○ applies addslashes()

Example:
$userEmail = "someone@somewhere.com |oopsies";
$filteredEmail = filter_var($userEmail, FILTER_SANITIZE_EMAIL);
print $filteredEmail;

//output: someone@somewhere.com

Many more - check out http://php.net/filter

http://php.net/filter

Getting into Zend Framework

● Using Zend Framework 1.11.9 for this presentation

● Get your own copy at http://framework.zend.com/download/latest

● Programmers are lazy - ZF from now on

http://framework.zend.com/download/latest

What are Filters in relation to ZF?

● Zend Framework Filters are most akin to sanitize filters in PHP
● The core class is Zend_Filter
● Filter Classes implement Zend_Filter_Interface

○ primarily expose a filter() method
● Filters are built to be chained
● Three main ways to use ZF Filters...

Using ZF Filters: Zend_Form
class Application_Form_Signup extends Zend_Form
{
 public function init()
 {
 $this->addElement('text', 'email', array(
 'label' =>'Email Address',
 'required' =>true,
 'filters' =>array('StringTrim', 'StringToLower'),
 'validators'=>array(
 'EmailAddress',
 array('StringLength', false, array(1, 250))
),
));

 $this->addElement('submit', 'submitbutton', array(
 'ignore'=>true,
 'label'=>'Sign Up Now',
));
 }
}

Using ZF Filters: Creating new instance
$filter = new Zend_Filter_Int();
$value = "6 fish";
echo $filter->filter($value);

//output: 6

Using ZF Filters: staticFilter() method
echo Zend_Filter::filterStatic('/var/www/ohhai.gif', 'BaseName');

//output: ohhai.gif

What's in the box?

● ZF comes with a set of standard filters
● Check them out here: http://framework.zend.com/manual/en/zend.

filter.set.html
● Or for the more curious, check out the classes:

○ library/Zend/Filter

http://framework.zend.com/manual/en/zend.filter.set.html
http://framework.zend.com/manual/en/zend.filter.set.html

Some notable filters included in ZF:

● Zend_Filter_Compress
○ compress/decompress
○ various algorithms

● Zend_Filter_Digits
○ Filters for Digits - unicode regular expression

● Zend_Filter_Encrypt
○ Super easy way to handle MCrypt

● Zend_Filter_LocalizedToNormalized
○ Think $, date/time

even more notable filters included in ZF:

● Zend_Filter_HtmlEntities
○ converts your code into a pancake

● Zend_Filter_StringToLower
○ useful for cases like email addresses

● Zend_Filter_StringTrim
○ useful for forms to filter input fields of trailing spaces

Additional parts from Zend_Filter

Unfortunately, these are out of scope of this initial presentation:

● Chaining
○ Connecting many filters together
○ Changing order filters are applied

● Zend_Filter_Input
○ build complex set of filters/validators as parameters
○ apply all of them to input/array

● Zend_Filter_Inflector
○ build filter workflow on patterned strings
○ patterns similar to ZF router route string format

Real Life Time

● Problem: I need HTML input/output for my application. I'm using
something snazzy like TinyMCE.

● Caveats:
○ Must allow some whitelisted html through
○ Must not allow for the hax0ring

● Initial findings:
○ HtmlEntities is somewhat helpful

■ pretty hammerish
○ StripTags is somewhat helpful

■ not precise enough

HTML Purifier

● I think HTML Purifier will solve my problem
○ http://htmlpurifier.org

● I want to use it in my ZF projects going forward
● I want it to be part of my "library" folder
● I want to do it the ZF way

○ Create an input filter with a Zend_Filter_Interface class

Add it to the Library

● Download it
● Add it to your library

○ I name mine by version

Basic Configuration
require_once 'htmlpurifier-4.3.0/HTMLPurifier.auto.php';
$config = HTMLPurifier_Config::createDefault();
$config->set('Cache.SerializerPath', '/path/to/cache');
$purifier = new HTMLPurifier($config);
$dirtyHTML = 'foo';
echo $purifier->purify($dirtyHtml);

Output:
foo

Create ZF Filter

● Create application/filters directory
● Register it in your bootstrap.php file with autoloader

○ So you can create new instances
○ Not necessary with forms

● Add it to your form definitions
○ So they can find it during filter stage

● Write filter

Add it to your Bootstrap Autoloader
protected function _initResources()
{
 $loader = $this->getResourceLoader();
 $loader->addResourceType('filter', 'filters', 'Filter');
}

Add it to your Form Class
<snippy>
public function init()
{
 $this->addElementPrefixPath(
 'Application_Filter',
 APPLICATION_PATH . '/filters/',
 'filter'
);
</end snippy>

Write Filter Class

class Application_Filter_CleanHTML implements Zend_Filter_Interface
{

}

New file: application/filters/CleanHtml.php

 /**
 * @var HTMLPurifier holds the instance of the purifier
 */
 protected $_purifier = null;

 /**
 * Filters the item
 * @param string $value
 * @return string filtered element
 */
 public function filter($value)
 {
 $this->_bootstrapPurifier();
 return $this->_purifier->purify($value);
 }

 /**
 * Start the purifier and store it locally
 */
 protected function _bootstrapPurifier()
 {
 ...
 }

 /**
 * Start the purifier and store it locally
 */
 protected function _bootstrapPurifier()
 {
 if ($this->_purifier == null) {
 require_once 'htmlpurifier-4.3.0/HTMLPurifier.auto.php';
 $config = HTMLPurifier_Config::createDefault();
 $config->set('Cache.SerializerPath', '/path/to/cache');
 $this->_purifier = new HTMLPurifier($config);
 }
 }

All the code - for those with good eyes
class Application_Filter_CleanHTML implements Zend_Filter_Interface
{
 /**
 * @var HTMLPurifier holds the instance of the purifier
 */
 protected $_purifier = null;

 /**
 * Filters the item
 * @param string $value
 * @return string filtered element
 */
 public function filter($value)
 {
 $this->_bootstrapPurifier();

 return $this->_purifier->purify($value);
 }

 /**
 * Start the purifier and store it locally
 */
 protected function _bootstrapPurifier()
 {
 if ($this->_purifier == null) {
 require_once 'htmlpurifier-4.3.0/HTMLPurifier.auto.php';
 $config = HTMLPurifier_Config::createDefault();
 $config->set('Cache.SerializerPath', '/path/to/cache');
 $this->_purifier = new HTMLPurifier($config);
 }
 }
}

Blog Entry? This is how I roll...
class Application_Form_Blog extends Zend_Form
{

<snippy>

 $this->addElement('textarea', 'body', array(
 'label' => 'Body Content',
 'required' => true,
 'validators' => array(
 array('StringLength', false, array(1,65000)),
),
 'class' => 'required mce',
 'maxlength' => 65000,
 'filters' => array('StringTrim', 'CleanHTML'),
));

</snippy>

The End

Aaron Saray
Milwaukee PHP Web Developer
http://aaronsaray.com
@aaronsaray

Download:
http://aaronsaray.com/blog/2011/07/20/zend-filter-presentation

Say Hi!

http://aaronsaray.com/blog/2011/07/20/zend-filter-presentation

